首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We model traffic flow with a time‐dependent fundamental diagram. A time‐dependent fundamental diagram arises naturally from various factors such as weather conditions, traffic jam or modern traffic congestion managements, etc. The model is derived from a car‐following model which takes into account the situation changes over the time elapsed time. It is a system of non‐concave hyperbolic conservation laws with time‐dependent flux and the sources. The global existence and uniqueness of the solution to the Cauchy problem is established under the condition that the variation in time of the fundamental diagram is bounded. The zero relaxation limit of the solutions is found to be the unique entropy solution of the equilibrium equation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper we discuss the existence of solutions of a system of nonlinear and singular partial differential equations constituting a phase field model with convection for non‐isothermal solidification/melting of certain metallic alloys in the case where two different kinds of crystallization are possible. Each one of these crystallization states is described by its own phase field, while the liquid phase is described by another one. The model also allows the occurrence of fluid flow in non‐solid regions, which are a priori unknown, and then we have a free‐boundary value problem. Thus, the model relates the evolutions of these three phase fields, the temperature of the solidification/melting process and the fluid flow in non‐solid regions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
One‐dimensional models of gravity‐driven sedimentation of polydisperse suspensions with particles that belong to N size classes give rise to systems of N strongly coupled, nonlinear first‐order conservation laws for the local solids volume fractions. As the eigenvalues and eigenvectors of the flux Jacobian have no closed algebraic form, characteristic‐wise numerical schemes for these models become involved. Alternative simple schemes for this model directly utilize the velocity functions and are based on splitting the system of conservation laws into two different first‐order quasi‐linear systems, which are solved successively for each time iteration, namely, the Lagrangian and remap steps (so‐called Lagrangian‐remap [LR] schemes). This approach was advanced in (Bürger, Chalons, and Villada, SIAM J Sci Comput 35 (2013), B1341–B1368) for a multiclass Lighthill–Whitham‐Richards traffic model with nonnegative velocities. By incorporating recent antidiffusive techniques for transport equations a new version of these Lagrangian‐antidiffusive remap (L‐AR) schemes for the polydisperse sedimentation model is constructed. These L‐AR schemes are supported by a partial analysis for N = 1. They are total variation diminishing under a suitable CFL condition and therefore converge to a weak solution. Numerical examples illustrate that these schemes, including a more accurate version based on MUSCL extrapolation, are competitive in accuracy and efficiency with several existing schemes. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1109–1136, 2016  相似文献   

4.
In this paper, we discuss the interactions of elementary waves and phase boundary for traffic flows introduced in [P. Goatin, The Aw‐Rascle vehicular traffic flow with phase transitions, Mathematical and Computer Modeling 44(2006) 287‐303]. Under the entropy conditions, we constructively obtain the existence and uniqueness of the solution. This result shows that, for some cases, a shock may speed up the increasing of the width of a free(congested) zone and a congested(free) zone may disappear into a free(congested) one. These phenomena also appear in the Kerner's observations. From the analytical point of view, this is one of the few results of the interactions of elementary waves for conservation laws developing phase transitions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we consider a two‐dimensional multi‐term time‐fractional Oldroyd‐B equation on a rectangular domain. Its analytical solution is obtained by the method of separation of variables. We employ the finite difference method with a discretization of the Caputo time‐fractional derivative to obtain an implicit difference approximation for the equation. Stability and convergence of the approximation scheme are established in the L ‐norm. Two examples are given to illustrate the theoretical analysis and analytical solution. The results indicate that the present numerical method is effective for this general two‐dimensional multi‐term time‐fractional Oldroyd‐B model.  相似文献   

6.
We approximate, in the sense of Γ‐convergence, free discontinuity functionals with linear growth by a sequence of non‐local integral functionals depending on the average of the gradient on small balls. The result extends to a higher dimension what is already proved in (Ann. Mat. Pura Appl. 2007; 186 (4): 722–744), where there is the proof of the general one‐dimensional case, and in (ESAIM Control Optim. Calc. Var. 2007; 13 (1):135–162), where the n‐dimensional case with ?=Id is treated. Moreover, we investigate whether it is possible to approximate a given free discontinuity functional by means of non‐local energies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Real traffic data are very versatile and are hard to explain with the so‐called standard fundamental diagram. A simple microscopic model can show that the heterogeneity of traffic results in a reduced mean flow and that the reduction is proportional to the density variance. Standard averaging techniques allow us to evaluate this reduction without having to describe the complex microscopic interactions. Using a second equation for the variance results in a two‐dimensional hyperbolic system that can be put in conservative form. The Riemann problem is completely solved in the case of a parabolic fundamental diagram, and the solutions are compared with the famous second‐order Aw–Rascle–Zhang model in a simulation of lane reduction. Adding a diffusion term results in entropy production, and the diffusive model is studied as well. Finally, a numerical scheme is used and converges to the analytical solution. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
This paper investigates the qualitative behaviour of single‐phase laminar convection for microchannels and conventionallysized channels formed between two parallel plates, captured by a numerical simulation on water flow. The convection parameters are obtained by separate numerical calculations on a series of parallel plates at constant temperatures. The pairs of parallel plates are maintained at progressively greater temperatures, to simulate the condition of increasing fluid temperature in a channel. The governing one‐dimensional (1‐D) momentum and energy equations are formulated to incorporate the dependence on temperature of both fluid viscosity (μ) and thermal conductivity (k). The qualitative behaviour of Nusselt number (Nu) decreasing with increasing Reynolds number (Re), exhibited by reported experimental data in literature, is simulated. Results show that it is practically dif_cult to observe this behaviour in the conventionally‐sized channels, but the effect easily surfaces in microchannels for practical lengths of flow and allowable high heat flux (qW). (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
In this paper, we present and analyze a finite volume method based on the Crouzeix–Raviart element for the coupled fracture model, where the fluid flow is governed by Darcy's law in the one‐dimensional fracture and two‐dimensional surrounding matrix. In the numerical scheme, the pressure in the matrix and fracture is respectively approximated by the Crouzeix–Raviart elements and piecewise constant functions, and then the velocity is calculated by piecewise constant functions element by element. The existence and uniqueness of the numerical solution are discussed, and optimal order error estimates for both the pressure p and the velocity u are proved on general triangulations. We finally carry out numerical experiments, and results confirm our theoretical analysis.  相似文献   

10.
We consider a laminar boundary‐layer flow of a viscous and incompressible fluid past a moving wedge in which the wedge is moving either in the direction of the mainstream flow or opposite to it. The mainstream flows outside the boundary layer are approximated by a power of the distance from the leading boundary layer. The variable pressure gradient is imposed on the boundary layer so that the system admits similarity solutions. The model is described using 3‐dimensional boundary‐layer equations that contains 2 physical parameters: pressure gradient (β) and shear‐to‐strain‐rate ratio parameter (α). Two methods are used: a linear asymptotic analysis in the neighborhood of the edge of the boundary layer and the Keller‐box numerical method for the full nonlinear system. The results show that the flow field is divided into near‐field region (mainly dominated by viscous forces) and far‐field region (mainstream flows); the velocity profiles form through an interaction between 2 regions. Also, all simulations show that the subsequent dynamics involving overshoot and undershoot of the solutions for varying parameter characterizing 3‐dimensional flows. The pressure gradient (favorable) has a tendency of decreasing the boundary‐layer thickness in which the velocity profiles are benign. The wall shear stresses increase unboundedly for increasing α when the wedge is moving in the x‐direction, while the case is different when it is moving in the y‐direction. Further, both analysis show that 3‐dimensional boundary‐layer solutions exist in the range −1<α<. These are some interesting results linked to an important class of boundary‐layer flows.  相似文献   

11.
The unique global existence of a solution to nonstationary Navier–Stokes system with prescribed nonzero flux F(t) in an infinite three‐dimensional pipe is proved. The obtained solution remains close to the corresponding nonstationary Poiseuille flow. Moreover, it converges to the Poiseuille flow as |x3|→∞. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
We analyze a class of weakly differentiable vector fields F : ?n → ?n with the property that FL and div F is a (signed) Radon measure. These fields are called bounded divergence‐measure fields. The primary focus of our investigation is to introduce a suitable notion of the normal trace of any divergence‐measure field F over the boundary of an arbitrary set of finite perimeter that ensures the validity of the Gauss‐Green theorem. To achieve this, we first establish a fundamental approximation theorem which states that, given a (signed) Radon measure μ that is absolutely continuous with respect to ??N ? 1 on ?N, any set of finite perimeter can be approximated by a family of sets with smooth boundary essentially from the measure‐theoretic interior of the set with respect to the measure ||μ||, the total variation measure. We employ this approximation theorem to derive the normal trace of F on the boundary of any set of finite perimeter E as the limit of the normal traces of F on the boundaries of the approximate sets with smooth boundary so that the Gauss‐Green theorem for F holds on E. With these results, we analyze the Cauchy flux that is bounded by a nonnegative Radon measure over any oriented surface (i.e., an (N ? 1)‐dimensional surface that is a part of the boundary of a set of finite perimeter) and thereby develop a general mathematical formulation of the physical principle of the balance law through the Cauchy flux. Finally, we apply this framework to the derivation of systems of balance laws with measure‐valued source terms from the formulation of the balance law. This framework also allows the recovery of Cauchy entropy flux through the Lax entropy inequality for entropy solutions of hyperbolic conservation laws. © 2008 Wiley Periodicals, Inc.  相似文献   

13.
We develop a formally high order Eulerian–Lagrangian Weighted Essentially Nonoscillatory (EL‐WENO) finite volume scheme for nonlinear scalar conservation laws that combines ideas of Lagrangian traceline methods with WENO reconstructions. The particles within a grid element are transported in the manner of a standard Eulerian–Lagrangian (or semi‐Lagrangian) scheme using a fixed velocity v. A flux correction computation accounts for particles that cross the v‐traceline during the time step. If v = 0, the scheme reduces to an almost standard WENO5 scheme. The CFL condition is relaxed when v is chosen to approximate either the characteristic or particle velocity. Excellent numerical results are obtained using relatively long time steps. The v‐traceback points can fall arbitrarily within the computational grid, and linear WENO weights may not exist for the point. A general WENO technique is described to reconstruct to any order the integral of a smooth function using averages defined over a general, nonuniform computational grid. Moreover, to high accuracy, local averages can also be reconstructed. By re‐averaging the function to a uniform reconstruction grid that includes a point of interest, one can apply a standard WENO reconstruction to obtain a high order point value of the function. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 651–680, 2017  相似文献   

14.
Two numerical methods for a one‐dimensional haptotaxis model, which exploit the use of van Leer flux limiter, are developed and analyzed. Sufficient conditions time step size and flux limiting are given for such formulation to ensure the non‐negativity of the discrete solution and second‐order accuracy in space. Another advantage is that we avoid solving large nonlinear systems of algebraic equations. The discrete preservation of total conservation of cell density, concentration, and logarithmic density is also verified for the numerical solution. Numerical results concerning accuracy, convergence rate, positivity, and conservation properties are presented and discussed. Similar approach could be applied efficiently in the corresponding two‐ and three‐dimensional problems. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

15.
In this paper, we will study the lower bounds of the life span (the maximal existence time) of solutions to the initial‐boundary value problems with small initial data and zero Neumann boundary data on exterior domain for one‐dimensional general quasilinear wave equations utt?uxx=b(u,Du)uxx+F(u,Du). Our lower bounds of the life span of solutions in the general case and special case are shorter than that of the initial‐Dirichlet boundary value problem for one‐dimensional general quasilinear wave equations. We clarify that although the lower bounds in this paper are same as that in the case of Robin boundary conditions obtained in the earlier paper, however, the results in this paper are not the trivial generalization of that in the case of Robin boundary conditions because the fundamental Lemmas 2.4, 2.5, 2.6, and 2.7, that is, the priori estimates of solutions to initial‐boundary value problems with Neumann boundary conditions, are established differently, and then the specific estimates in this paper are different from that in the case of Robin boundary conditions. Another motivation for the author to write this paper is to show that the well‐posedness of problem 1.1 is the essential precondition of studying the lower bounds of life span of classical solutions to initial‐boundary value problems for general quasilinear wave equations. The lower bound estimates of life span of classical solutions to initial‐boundary value problems is consistent with the actual physical meaning. Finally, we obtain the sharpness on the lower bound of the life span 1.8 in the general case and 1.10 in the special case. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, we consider a second‐order fast explicit operator splitting method for the viscous Cahn‐Hilliard equation, which includes a viscosity term αΔut (α ∈ (0, 1)) described the influences of internal micro‐forces. The choice α = 0 corresponds to the classical Cahn‐Hilliard equation whilst the choice α = 1 recovers the nonlocal Allen‐Cahn equation. The fundamental idea of our method is to split the original problem into linear and nonlinear parts. The linear subproblem is numerically solved using a pseudo‐spectral method, and thus an ordinary differential equation is obtained. The nonlinear one is solved via TVD‐RK method. The stability and convergence are discussed in L2‐norm. Numerical experiments are performed to validate the accuracy and efficiency of the proposed method. Besides, a detailed comparison is made for the dynamics and the coarsening process of the metastable pattern for various values of α. Moreover, energy degradation and mass conservation are also verified.  相似文献   

17.
In this paper, we consider the one‐dimensional compressible isentropic Navier–Stokes equations with a general ‘pressure law’ and the density‐dependent viscosity coefficient when the density connects to vacuum continuously. Precisely, the viscosity coefficient µ is proportional to ρθ and 0<θ<1, where ρ is the density. And the pressure P = P(ρ) is a general ‘pressure law’. The global existence and the uniqueness of weak solutions is proved, and a decay result for the pressure as t→ + ∞ is given. It is also proved that no vacuum states and no concentration states develop, and the free boundary do not expand to infinite. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, we prove the global well‐posedness of non‐Newtonian viscous fluid flow of the Oldroyd‐B model with free surface in a bounded domain of N‐dimensional Euclidean space . The assumption of the problem is that the initial data are small enough and orthogonal to rigid motions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
We compared flood mapping techniques using a one‐dimensional (1D) hydraulic model HEC‐RAS and two‐dimensional (2D) LISFLOOD‐FP for a 10‐km reach of Gorgan River in Iran. Both models were run using the same hydrologic input data. The input into the models was a steady discharge of 90 cm, corresponds to a flood peak occurred on March 25, 2012. Flood maps generated using these two models were compared with an observed flood inundation map, using F‐statistic. The roughness coefficients of the models were calibrated by maximizing the value of the F‐statistic. Based on the F‐statistic, LISFLOOD‐FP gives a slightly better result (F = 0.69) than HEC‐RAS (F = 0.67). Visual comparison of the flood extents generated by the two models showed reasonably good agreement. Validation was done using a flood event occurred on May 31, 2014. The LISFLOOD‐FP model gave a better result for validation as well. The 2D model showed more consistency in comparison with the 1D model.  相似文献   

20.
An adaptive finite volume method for one‐dimensional strongly degenerate parabolic equations is presented. Using an explicit conservative numerical scheme with a third‐order Runge‐Kutta method for the time discretization, a third‐order ENO interpolation for the convective term, and adding a conservative discretization for the diffusive term, we apply the multiresolution method combining two fundamental concepts: the switch between central interpolation or exact computing of numerical flux and a thresholded wavelet transform applied to cell averages of the solution to control the switch. Applications to mathematical models of sedimentation‐consolidation processes and traffic flow with driver reaction, which involve different types of boundary conditions, illustrate the computational efficiency of the new method. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号