首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Given a sequence A = (a 1, …, a n ) of real numbers, a block B of A is either a set B = {a i , a i+1, …, a j } where ij or the empty set. The size b of a block B is the sum of its elements. We show that when each a i ∈ [0, 1] and k is a positive integer, there is a partition of A into k blocks B 1, …, B k with |b i ?b j | ≤ 1 for every i, j. We extend this result in several directions.  相似文献   

2.
In 1982 Thomassen asked whether there exists an integer f(k,t) such that every strongly f(k,t)-connected tournament T admits a partition of its vertex set into t vertex classes V 1,…V t such that for all i the subtournament T[V i] induced on T by V i is strongly k-connected. Our main result implies an affirmative answer to this question. In particular we show that f(k, t)=O(k 7 t 4) suffices. As another application of our main result we give an affirmative answer to a question of Song as to whether, for any integer t, there exists aninteger h(t) such that every strongly h(t)-connected tournament has a 1-factor consisting of t vertex-disjoint cycles of prescribed lengths. We show that h(t)=O(t 5) suffices.  相似文献   

3.
Let x 0, x 1,? , x n , be a set of n + 1 distinct real numbers (i.e., x i x j , for ij) and y i, k , for i = 0,1,? , n, and k = 0 ,1 ,? , n i , with n i ≥ 1, be given of real numbers, we know that there exists a unique polynomial p N ? 1(x) of degree N ? 1 where \(N={\sum }_{i=0}^{n}(n_{i}+1)\), such that \(p_{N-1}^{(k)}(x_{i})=y_{i,k}\), for i = 0,1,? , n and k = 0,1,? , n i . P N?1(x) is the Hermite interpolation polynomial for the set {(x i , y i, k ), i = 0,1,? , n, k = 0,1,? , n i }. The polynomial p N?1(x) can be computed by using the Lagrange polynomials. This paper presents a new method for computing Hermite interpolation polynomials, for a particular case n i = 1. We will reformulate the Hermite interpolation polynomial problem and give a new algorithm for giving the solution of this problem, the Matrix Recursive Polynomial Interpolation Algorithm (MRPIA). Some properties of this algorithm will be studied and some examples will also be given.  相似文献   

4.
Suppose each of kn o(1) players holds an n-bit number x i in its hand. The players wish to determine if ∑ ik x i =s. We give a public-coin protocol with error 1% and communication O(k logk). The communication bound is independent of n, and for k≥3 improves on the O(k logn) bound by Nisan (Bolyai Soc. Math. Studies; 1993).  相似文献   

5.
For any positive integers k and m, the k-step m-competition graph C m k (D) of a digraph D has the same set of vertices as D and there is an edge between vertices x and y if and only if there are distinct m vertices v1, v2, · · ·, v m in D such that there are directed walks of length k from x to v i and from y to v i for all 1 ≤ im. The m-competition index of a primitive digraph D is the smallest positive integer k such that C m k (D) is a complete graph. In this paper, we obtained some sharp upper bounds for the m-competition indices of various classes of primitive digraphs.  相似文献   

6.
A random graph is said to obey the (monadic) zero–one k-law if, for any property expressed by a first-order formula (a second-order monadic formula) with a quantifier depth of at most k, the probability of the graph having this property tends to either zero or one. It is well known that the random graph G(n, n–α) obeys the (monadic) zero–one k-law for any k ∈ ? and any rational α > 1 other than 1 + 1/m (for any positive integer m). It is also well known that the random graph does not obey both k-laws for the other rational positive α and sufficiently large k. In this paper, we obtain lower and upper bounds on the largest at which both zero–one k-laws hold for α = 1 + 1/m.  相似文献   

7.
Let G be a countable group that splits as a free product of groups of the form G = G 1 *···* G k * F N , where F N is a finitely generated free group. We identify the closure of the outer space PO(G, {G 1,..., G k }) for the axes topology with the space of projective minimal, very small (G, {G 1,..., G k })-trees, i.e. trees whose arc stabilizers are either trivial, or cyclic, closed under taking roots, and not conjugate into any of the G i ’s, and whose tripod stabilizers are trivial. Its topological dimension is equal to 3N + 2k ? 4, and the boundary has dimension 3N + 2k ? 5. We also prove that any very small (G, {G 1,..., G k })-tree has at most 2N + 2k?2 orbits of branch points.  相似文献   

8.
A theorem of Tverberg from 1966 asserts that every set X ? ? d of n = T(d, r) = (d + 1)(r ? 1) + 1 points can be partitioned into r pairwise disjoint subsets, whose convex hulls have a point in common. Thus every such partition induces an integer partition of n into r parts (that is, r integers a 1,..., a r satisfying n = a 1 + ··· + a r ), in which the parts a i correspond to the number of points in every subset. In this paper, we prove that for any partition of n where the parts satisfy a i d + 1 for all i = 1,..., r, there exists a set X ? ? of n points, such that every Tverberg partition of X induces the same partition on n, given by the parts a 1,..., a r .  相似文献   

9.
We study the nonexistence of weak solutions of higher-order elliptic and parabolic inequalities of the following types: \(\sum {_{i = 1}^N\sum\nolimits_{{e_i} \leqslant {\alpha _i} \leqslant {m_i}} {D_{{x_i}}^{{\alpha _i}}\left( {{A_{{\alpha _i}}}\left( {x,u} \right)} \right)} \geqslant f\left( {x,u} \right),} x \in {\mathbb{R}^N}\), and \({u_t} + \sum {_{i = 1}^N\sum\nolimits_{{k_i} \leqslant {\beta _i} \leqslant {n_i}} {D_{{x_i}}^{{\beta _i}}\left( {{B_{{\beta _i}}}\left( {x,t,u} \right)} \right)} > g\left( {x,t,u} \right),\left( {x,t} \right)} \in {\mathbb{R}^N} \times {\mathbb{R}_ + }\), where l i , m i , k i , n i ∈ N satisfy the condition l i , k i > 1 for all i = 1,..., N, and A αi (x, u), B βi (x, t, u), f(x, u), and g(x, t, u) are some given Carathéodory functions. Under appropriate conditions on the functions A αi , B βi , f, and g, we prove theorems on the nonexistence of solutions of these inequalities.  相似文献   

10.
The notion of local primitivity for a quadratic 0, 1-matrix of size n × n is extended to any part of the matrix which need not be a rectangular submatrix. A similar generalization is carried out for any set B of pairs of initial and final vertices of the paths in an n-vertex digraph, B ? {(i, j) : 1 ≤ i, jn}. We establish the relationship between the local B-exponent of a matrix (digraph) and its characteristics such as the cyclic depth and period, the number of nonprimitive matrices, and the number of nonidempotentmatrices in the multiplicative semigroup of all quadratic 0, 1-matrices of order n, etc. We obtain a criterion of B-primitivity and an upper bound for the B-exponent. We also introduce some new metric characteristics for a locally primitive digraph Γ: the k, r-exporadius, the k, r-expocenter, where 1 ≤ k, rn, and the matex which is defined as the matrix of order n of all local exponents in the digraph Γ. An example of computation of the matex is given for the n-vertex Wielandt digraph. Using the introduced characteristics, we propose an idea for algorithmically constructing realizable s-boxes (elements of round functions of block ciphers) with a relatively wide range of sizes.  相似文献   

11.
A k-factor of a graph G is a k-regular spanning subgraph of G. A k-factorization is a partition of E(G) into k-factors. Let K(np) be the complete multipartite graph with p parts, each of size n. If \(V_{1},\ldots , V_{p}\) are the p parts of V(K(np)), then a holey k -factor of deficiency \(V_{i}\) of K(np) is a k-factor of \(K(n,p)-V_{i}\) for some i satisfying \(1\le i \le p\). Hence a holey k -factorization is a set of holey k-factors whose edges partition E(K(np)). Representing each (holey) k-factor as a color class in an edge-coloring, a (holey) k-factorization of K(np) is said to be fair if between each pair of parts the color classes have size within one of each other (so the edges are shared “evenly” among the permitted (holey) factors). In this paper the existence of fair 1-factorizations of K(np) is completely settled, as is the existence of fair holey 1-factorizations of K(np). The latter result can be used to provide a new construction for symmetric quasigroups of order np with holes of size n. Such quasigroups have the additional property that the permitted symbols are shared as evenly as possible among the cells in each \(n \times n\) “box”. These quasigroups are in some sense as far from frames produced by direct products as possible.  相似文献   

12.
We consider the k-level facility location problem with soft capacities (k-LFLPSC). In the k-LFLPSC, each facility i has a soft capacity u i along with an initial opening cost f i ≥ 0, i.e., the capacity of facility i is an integer multiple of u i incurring a cost equals to the corresponding multiple of f i . We firstly propose a new bifactor (ln(1/β)/(1 ?β),1+2/(1 ?β))-approximation algorithm for the k-level facility location problem (k-LFLP), where β ∈ (0, 1) is a fixed constant. Then, we give a reduction from the k-LFLPSC to the k-LFLP. The reduction together with the above bifactor approximation algorithm for the k-LFLP imply a 5.5053-approximation algorithm for the k-LFLPSC which improves the previous 6-approximation.  相似文献   

13.
A k-cycle system of order v with index λ, denoted by CS(v, k, λ), is a collection A of k-cycles (blocks) of K v such that each edge in K v appears in exactly λ blocks of A. A large set of CS(v, k, λ)s is a partition of the set of all k-cycles of K v into CS(v, k, λ)s, and is denoted by LCS(v, k, λ). A (v ?1)-cycle in K v is called almost Hamilton. The completion of the existence problem for LCS(v, v?1, λ) depends only on one case: all v ≥ 4 for λ = 2. In this paper, it is shown that there exists an LCS(v, v ? 1, 2) for all v ≡ 2 (mod 4), v ≥ 6.  相似文献   

14.
We present a tight bound on the exact maximum complexity of Minkowski sums of polytopes in ?3. In particular, we prove that the maximum number of facets of the Minkowski sum of k polytopes with m 1,m 2,…,m k facets, respectively, is bounded from above by \(\sum_{1\leq i. Given k positive integers m 1,m 2,…,m k , we describe how to construct k polytopes with corresponding number of facets, such that the number of facets of their Minkowski sum is exactly \(\sum_{1\leq i. When k=2, for example, the expression above reduces to 4m 1 m 2?9m 1?9m 2+26.  相似文献   

15.
Define T(d, r) = (d + 1)(r - 1) + 1. A well known theorem of Tverberg states that if nT(d, r), then one can partition any set of n points in Rd into r pairwise disjoint subsets whose convex hulls have a common point. The numbers T(d, r) are known as Tverberg numbers. Reay added another parameter k (2 ≤ kr) and asked: what is the smallest number n, such that every set of n points in Rd admits an r-partition, in such a way that each k of the convex hulls of the r parts meet. Call this number T(d, r, k). Reay conjectured that T(d, r, k) = T(d, r) for all d, r and k. In this paper we prove Reay’s conjecture in the following cases: when k ≥ [d+3/2], and also when d < rk/r-k - 1. The conjecture also holds for the specific values d = 3, r = 4, k = 2 and d = 5, r = 3, k = 2.  相似文献   

16.
Members of an organization belong to one of the grades (1, 2,... k), and movements between grades are governed by a substochastic matrix P. The model can be deterministic, stochastic, or partially stochastic; and we may or may not insist that the total size be restored to a fixed quantity each year. Various notions of the stability of a structure x = (x1, x2, … x k ), where x i represents the number, or proportion, in grade i are considered. Mainly, but not exclusively, the case when P is upper triangular is considered.  相似文献   

17.
Andrews recently defined new combinatorial objects which he called (ki)-singular overpartitions and proved that they are enumerated by \(\overline{C}_{k,i}(n)\) which is the number of overpartitions of n in which no part is divisible by k and only the parts \(\equiv \pm i \pmod {k}\) may be overlined. Andrews further showed that \(\overline{C}_{3,1}(n)\) satisfies some Ramanujan-type congruences modulo 3. In this paper, we show that for any pair (ki), \(\overline{C}_{k,i}(n)\) satisfies infinitely many Ramanujan-type congruences modulo any power of prime coprime to 6k. We also show that for an infinite family of k, the value \(\overline{C}_{3k,k}(n)\) is almost always even. Finally, we investigate the parity of \(\overline{C}_{4k,k}\).  相似文献   

18.
A mixed covering array (MCA) of type (v 1, v 2,..., v k ), denoted by MCAλ (N; t, k, (v 1, v 2,..., v k )), is an N × k array with entries in the i-th column from a set V i of v i symbols and has the property that each N × t sub-array covers all the t-tuples at least λ times, where 1 ≤ ik. An MCA λ (N; t, k, (v 1, v 2,..., v k )) is said to be super-simple, if each of its N × (t + 1) sub-arrays contains each (t + 1)-tuple at most once. Recently, it was proved by Tang, Yin and the author that an optimum super-simple MCA of type (a, b, b,..., b) is equivalent to a mixed detecting array (DTA) of type (a, b, b,..., b) with optimum size. Such DTAs can be used to generate test suites to identify and determine the interaction faults between the factors in a component-based system. In this paper, some combinatorial constructions of optimum super-simple MCAs of type (a, b, b,..., b) are provided. By employing these constructions, some optimum super-simple MCAs are then obtained. In particular, the spectrum across which optimum super-simple MCA2(2b 2; 2, 4, (a, b, b, b))′s exist, is completely determined, where 2 ≤ ab.  相似文献   

19.
For any positive integer k ≥ 3, it is easy to prove that the k-polygonal numbers are an(k) = (2n+n(n?1)(k?2))/2. The main purpose of this paper is, using the properties of Gauss sums and Dedekind sums, the mean square value theorem of Dirichlet L-functions and the analytic methods, to study the computational problem of one kind mean value of Dedekind sums S(an(k)ām(k), p) for k-polygonal numbers with 1 ≤ m, np ? 1, and give an interesting computational formula for it.  相似文献   

20.
A non-empty subset A of X=X 1×???×X d is a (proper) box if A=A 1×???×A d and A i ?X i for each i. Suppose that for each pair of boxes A, B and each i, one can only know which of the three states takes place: A i =B i , A i =X i ?B i , A i ?{B i ,X i ?B i }. Let F and G be two systems of disjoint boxes. Can one decide whether ∪F=∪G? In general, the answer is ‘no’, but as is shown in the paper, it is ‘yes’ if both systems consist of pairwise dichotomous boxes. (Boxes A, B are dichotomous if there is i such that A i =X i ?B i .) Several criteria that enable to compare such systems are collected. The paper includes also rigidity results, which say what assumptions have to be imposed on F to ensure that ∪F=∪G implies F=G. As an application, the rigidity conjecture for 2-extremal cube tilings of Lagarias and Shor is verified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号