首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The song of dunes as a wave-particle mode locking   总被引:2,自引:0,他引:2  
Singing dunes, which emit a loud sound as they avalanche, constitute a striking and poorly understood natural phenomenon. We show that, on the one hand, avalanches excite elastic waves at the surface of the dune, whose vibration produces the coherent acoustic emission in the air. The amplitude of the sound (approximately 105 dB) saturates exactly when the vibration makes the grains take off the flowing layer. On the other hand, we show that the sound frequency (approximately 100 Hz) is controlled by the shear rate inside the sand avalanche, which for granular matter is equivalent to the mean rate at which grains make collisions. This proves the existence of a feedback of elastic waves on particle motion, leading to a partial synchronization of the avalanching sand grains. It suggests that the song of dunes results from a wave-particle mode locking.  相似文献   

2.
Song of the dunes as a self-synchronized instrument   总被引:1,自引:0,他引:1  
Since Marco Polo it has been known that some sand dunes have the peculiar ability to emit a loud sound with a well-defined frequency, sometimes for several minutes. The origin of this sustained sound has remained mysterious, partly because of its rarity in nature. It has been recognized that the sound is not due to the air flow around the dunes but to the motion of an avalanche, and not to an acoustic excitation of the grains but to their relative motion. By comparing singing dunes around the world and two controlled experiments, in the laboratory and the field, we prove that the frequency of the sound is the frequency of the relative motion of the sand grains. Sound is produced because moving grains synchronize their motions. The laboratory experiment shows that the dune is not needed for sound emission. A velocity threshold for sound emission is found in both experiments, and an interpretation is proposed.  相似文献   

3.
On the crescentic shape of barchan dunes   总被引:4,自引:0,他引:4  
Aeolian sand dunes originate from wind flow and sand bed interactions. According to wind properties and sand availability, they can adopt different shapes, ranging from huge motion-less star dunes to small and mobile barchan dunes. The latter are crescentic and emerge under a unidirectional wind, with a low sand supply. Here, a 3d model for barchan based on existing 2d model is proposed. After describing the intrinsic issues of 3d modeling, we show that the deflection of particules in reptation due to the shape of the dune leads to a lateral sand flux deflection, which takes the mathematical form of a non-linear diffusive process. This simple and physically meaningful coupling method is used to understand the shape of barchan dunes.Received: 26 January 2004, Published online: 9 April 2004PACS: 45.70.-n Granular systems - 47.54. + r Pattern selection; pattern formation  相似文献   

4.
We have investigated CoNiFe and CoNiFe–C electrodeposited by pulse reverse plating (PRP) and direct current (DC) techniques. CoNiFe(PRP) films with composition Co59.4Fe27.7Ni12.8 show coercivity of 95 A m−1 (1.2 Oe) and magnetization saturation flux (μ0Ms) of 1.8 T. Resistivity of CoNiFe (PRP) is about 24 μΩ cm and permeability remains almost constant μr′ ∼475 up to 30 MHz with a quality factor (Q) larger than 10. Additionally, the permeability spectra analysis shows that CoNiFe exhibits a classical eddy current loss at zero bias field and ferromagnetic resonance (FMR) when biased with 0.05 T. Furthermore, a crossover between eddy current and FMR loss is observed for CoNiFe-PRP when baised with 0.05 T. DC and PRP plated CoNiFe–C, which have resistivity and permeability of 85, 38 μΩ cm, μr′=165 and 35 with Q>10 up to 320 MHz, respectively, showed only ferromagnetic resonance losses. The ferromagnetic resonance peaks in CoNiFe and CoNiFe–C are broad and resembles a Gaussian distribution of FMR frequencies. The incorporation of C to CoNiFe reduces eddy current loss, but also reduces the FMR frequency.  相似文献   

5.
Sand-moving winds blowing from a constant direction in an area of high sand availability form transverse dunes, which have a fixed profile in the direction orthogonal to the wind. Here we show, by means of a linear stability analysis, that transverse dunes are intrinsically unstable. Any perturbation in the cross-wind profile of a transverse dune amplifies in the course of dune migration due to the combined effect of two main factors, namely: the lateral transport through avalanches along the dune’s slip-face, and the scaling of dune migration velocity with the inverse of the dune height. Our calculations provide a quantitative explanation for recent observations from experiments and numerical simulations, which showed that transverse dunes moving on the bedrock (or “transverse sand ridges”) cannot exist in a stable form and decay into a chain of crescent-shaped barchans.  相似文献   

6.
《Surface science》1986,172(1):230-256
Two features of light scattering from a deep lossless metallic sinusoidal grating are considered in the limit g/d → ∞, where g and d are the height and periodicity of the grating, respectively. It is found that the surface plasmon dispersion relation is comprised of two flat bands with a frequency gap Δω/ωp = (√2 − 1)/2, where ωp is the volume plasmon frequency. For the local field enhancement distribution at the grating's surface, the results show the existence of two qualitatively distinct domains, i.e., λd and λd, where λ denotes the radiation wavelength. In both domains, however, the local field enhancement is larger at the bottom of the troughts than at the top of the peaks. The dressed Rayleigh expansion is used throughout for the analysis.  相似文献   

7.
High-pressure behaviour of orthorhombic MgSiO3 perovskite crystal is simulated by using the density functional theory and plane-wave pseudopotentials approach up to 120 GPa pressure at zero temperature. The lattice constants and mass density of the MgSiO3 crystal as functions of pressure are computed, and the corresponding bulk modulus and bulk velocity are evaluated. Our theoretical results agree well with the high-pressure experimental data. A thermodynamic method is introduced to correct the temperature effect on the O-K first-principles results of bulk wave velocity, bulk modulus and mass density in lower mantle PIT range. Taking into account the temperature corrections, the corrected mass density, bulk modulus and bulk wave velocity of MgSiO3-perovskite are estimated from the first-principles results to be 2%, 4%, and 1% lower than the preliminary reference Earth model (PREM) profile, respectively, supporting the possibility of a pure perovskite lower mantle model.  相似文献   

8.
The elasticity theory equations are obtained for a 1d conductor. The frequency dependence of the sound attenuation is analysed, the spatial dispersion being strong or weak. The effect of oscillations of the attenuation is predicted which is due to a jumping nature of electronic motion in a non-uniform field of the sound wave, with a fixed jumping length. That is why the oscillations are of the geometric resonance type. Because of absence of Landau's damping, the frequency dependence of attenuation in a region of strong spatial dispersion is quadratic rather than linear one, as in 3d metals. This dependence is determined by a quantum nature of electronic scattering on separate impurities which move with an oscillating lattice.  相似文献   

9.
Measurements on ten binary alloys of the body-centered cubic part of the 5d-alloy series Hf-Ta and Ta-W yield a linear relationship between the derivatives of the quantityg both with respect to pressure and to valence electron concentration, whereg is defined byT c ∝ θ exp (?1/g). This result agrees with observations on alloys of the 4d-series, Zr-Nb and Nb-Mo. It is concluded that for these alloys composed from the central part of the 4d and 5d transition series, the interaction responsible for superconductivity is less subject to complications than for other transition metals and is probably governed by the electronic density of states. Data on the variation of the transition temperature with concentration in Hf-Ta alloys are included.  相似文献   

10.
A short survey has been made on the extensive work that is being done on the pressure derivatives of the second order elastic constants (SOEC) to ascertain various properties of substances. Hence an attempt has been made to correlate the pressure derivatives to some properties of the substances. Thus some equations have been derived to correlate the Grüneisen parameter which is evaluated from Schofield's equations and Bhatia-Singh's (BS) parameters. They have been used to compute the longitudinal (γgL) and transverse (γgT) Grüneisen constants. γgL calculated by different methods agree well with experiment. γgT obtained from BS parameters gives rather higher value while Schofield's equations give results in agreement with experiment. The DeLaunay-Nath-Smith (DNS) equation has been used to derive a relation to compute γgel (elastic). A method has been extended to calculate the third order elastic constants (TOEC) and it is found to give excellent values of TOECs in agreement with experiment. The absorption band position of TeO2 has been predicted to occur at 276 cm−1. The phonon dispersion curves have been calculated through BS equations for TeO2. Several other properties of TeO2 have been computed such as thermal Grüneisen parameter γgth, its pressure derivatives (γgth)′≡(dγgth/dP), the pressure variation of bulk modulus C1≡(dKT/dP)T and its pressure derivatives that is (dC1/dP)T which is in turn related to (γgth)′, the heat capacity at constant volume CV, and the second Grüneisen constant Q. In some cases we calculated these quantities by different methods and the agreement between them is good. Besides we evaluated δTAG the Anderson Grüneisen parameter. Another important aspect of the present investigations is the formulation of the potential function (PF) of TeO2 from which we calculated SOECs and these are found to be in excellent agreement with experiment. All other properties mentioned already have also been calculated through the use of the newly formulated PF and the calculated values obtained through various other equations are in good agreement with those obtained from PF. According to valence force field (VFF) all atomic forces can be resolved into bond bending β and bond stretching α forces. It is shown that TeO2 does not satisfy Martins unity rule. Hence it is concluded that there is an effective dynamic charge on Te in TeO2. Using the experimental elastic constants the bond bending force β and bond stretching force α and also their pressure derivatives have been evaluated. In addition the reststrauhlen optic frequency ω has been calculated. A self consistent check has been made by evaluating C44 through the calculated values of α and β.  相似文献   

11.
Transgressive dune fields, which are active sand areas surrounded by vegetation, exist on many coasts. In some regions like in Fraser Island in Australia, small dunes shrink while large ones grow, although both experience the same climatic conditions. We propose a general mathematical model for the spatiotemporal dynamics of vegetation cover on sand dunes and focus on the dynamics of transgressive dunes. Among other possibilities, the model predicts growth parallel to the wind with shrinkage perpendicular to the wind, where, depending on geometry and size, a transgressive dune can initially grow although eventually shrink. The larger is the initial area the slower its stabilization process. The model’s predictions are supported by field observations from Fraser Island in Australia.  相似文献   

12.
The equations of state (EOS) and other thermodynamic properties of cubic boron nitride (C-BN) have been studied by the first-principles method under high pressure. Under ambient conditions, our results are consistent with the available experimental data and those calculated by others. At the same time, the dependences of Young’s modulus and the shear modulus of C-BN on pressure P are successfully obtained. Moreover, the variation of the Poisson ratio, Debye temperature, specific heat, and thermal expansion coefficient with pressure P up to 200 GPa at 300 K have been investigated for the first time by means of a quasi-harmonic Debye model, in which phononic effects are considered.  相似文献   

13.
The spin Hamiltonian parameters (SH) (g factors g and g) for the trigonal [Ti(H2O)6]3+ clusters in the rapidly frozen solutions of Ti3+ are calculated from the complete diagonalization (of energy matrix) method (CDM, which is established in this paper) and the perturbation theory method (PTM). The two methods are based on the two-spin-orbit-parameter model (where both the contribution due to the spin-orbit (SO) coupling parameter of central 3dn ion and that of ligand are included) rather than the one-SO-parameter model in the conventional crystal-field theory (where only the contribution due to the SO coupling parameter of 3dn ion is considered). The calculated results from both methods are not only consistent with the observed values, but also close to each other. This suggests that both methods can be effective in the studies of SH parameters.  相似文献   

14.
Barchan dunes are found where sand availability is low and wind direction quite constant. The two dimensional shear stress of the wind field and the sand movement by saltation and avalanches over a barchan dune are simulated. The model with one dimensional shear stress is extended including surface diffusion and lateral shear stress. The resulting final shape is compared to the results of the model with a one dimensional shear stress and confirmed by comparison to measurements. We found agreement and improvements with respect to the model with one dimensional shear stress. Additionally, a characteristic edge at the center of the windward side is discovered which is also observed for big barchans. Diffusion effects reduce this effect for small dunes.  相似文献   

15.
In the present work, we use dune modeling in order to investigate the evolution of transverse dunes in the presence of vegetation. The vegetation is allowed to grow up to a maximum height with a growth rate R that oscillates in time. We find that the presence of the vegetation establishes a maximum height for the transverse dunes. If the transverse dune is larger than this maximum size, then the vegetation traps a considerable amount of sand, leading to the formation of vegetation marks at the upwind side of the dune. We also investigate the formation of the transverse dune fields from a flat sand beach under saturated sand flux and vegetation growth. We find that the behavior of the field is determined by the maximum height, , of the vegetation cover.  相似文献   

16.
We calculated and studied the quantum coherence effects of a degenerate transition Fg = 3 ↔ Fe = 2 system interacting with a weak linearly polarized (with σ± components) probe light and a strong linearly polarized (with σ± components) coupling field. Due to the competition between the drive Rabi frequency and the Zeeman splitting, electromagnetically induced transparency (EIT) and electromagnetically induced absorption (EIA) are appeared at the different values of applied magnetic field in both cases that the Zeeman splitting of excited state Δe is smaller than the Zeeman splitting of ground state Δg (i.e., Δe < Δg) and Δe > Δg. It is shown that the resonance is broader and contrasts are higher for Δe < Δg than that for Δe > Δg at the same Rabi frequencies of probe and coupling fields.  相似文献   

17.
We solve a self-consistent equation for the d-wave superconducting gap and the effective exchange field in the mean-field approximation, study the Zeeman effects on the d-wave superconducting gap and thermodynamic potential. The Josephson currents in the d-wave superconductor (S)/insulating layer (I)/d-wave S junction are calculated as a function of the temperature, exchange field, and insulating barrier strength under a Zeeman magnetic field on the two d-wave Ss. It is found that the Josephson critical currents in d-wave S/d-wave S junction depend to a great extent on the relative orientation of the effective exchange field of the two S electrodes, and the crystal orientation of the d-wave S. The exchange field can under certain conditions enhance the Josephson critical current in a d-wave S/I/d-wave S junction.  相似文献   

18.
The Reynolds averaged N-S equation and dynamic equation for nanoparticles are numerically solved in the two-phase flow around cylinders, and the distributions of the concentration M0 and geometric mean diameter dg of particles are given. Some of the results are validated by comparing with previous results. The effects of particle coagulation and breakage and the initial particle concentration m00 and size d0 on the particle distribution are analyzed. The results show that for the flow around a single cylinder, M0 is reduced along the flow direction. Placing a cylinder in a uniform flow will promote particle breakage. For the flow around multiple cylinders, the values of M0 behind the cylinders oscillate along the spanwise direction, and the wake region in the flow direction is shorter than that for the flow around a single cylinder. For the initial monodisperse particles, the values of dg increase along the flow direction and the effect of particle coagulation is larger than that of particle breakage. The values of dg fluctuate along the spanwise direction; the closer to the cylinders, the more frequent the fluctuations of dg values. For the initial polydisperse particles with d0 = 98 nm and geometric standard deviation σ = 1.65, the variations of dg values along the flow and spanwise directions show the same trend as for the initial monodisperse particles, although the differences are that the values of dg are almost the same for the cases with and without considering particle breakage, while the distribution of dg along the spanwise direction is flatter in the case with initial polydisperse particles.  相似文献   

19.
We have investigated the threshold properties of Rubidium blue bronze Rb0.3MoO3 under high dc electric field in a large temperature range 20-150 K. The second threshold fields have been observed at temperature up to 102.4 K, and have quasi-linear relationships with temperatures 20-45 K and 55-100 K, respectively. A novel crossover platform has been found firstly in the temperature dependence of the second threshold field ET2 at about 45-55 K. The results indicate that the dynamical behavior of the second threshold effects may originate from different mechanisms. We suggest that the highly conducting state at 20-45 K and 55-100 K result from the undamped sliding motion of rigid CDW and current inhomogeneity, respectively.  相似文献   

20.
A series of sodium borophosphate glasses of the composition (1−x)NaPO3xB2O3 have been synthesised from Na2CO3, B2O3 and P2O5 and their optical and thermal properties investigated. The results show that refractive index (n) and glass transition temperature (Tg) show a maximum at about B/(B+P)=0.6 while thermal expansion coefficient (α) and thermo-optic coefficient (dn/dT) change monotonically with the B/(B+P) ratio. These observations can be interpreted based on the incorporation of BO3 and BO4 units into the glass structural network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号