首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ferroelectric BiFeO3 thin films with Nd-Cr (or Sm-Cr) co-substitution (denoted by BNdFCr and BSmFCr, respectively) were deposited on the Pt(2 0 0)/TiO2/SiO2/Si(1 0 0) substrates by a chemical solution deposition method. X-ray diffraction patterns revealed the formation of BNdFCr and BSmFCr thin films without any secondary phases. The co-substituted BNdFCr (or BSmFCr) thin films, which were annealed at 550 °C for 30 min in N2 atmosphere, exhibited enhanced electrical properties compared to BFO thin films with the remanent polarization (2Pr) and coercive electric field (2Ec) of 196, 188 μC/cm2 and 600, 570 kV/cm with the electric field of 800 kV/cm, respectively. The leakage current densities of BNdFCr and BSmFCr thin films measured at room temperature were approximately three orders of magnitude lower than that of BFO thin film, and the leakage current at room temperature of the thin films exhibited three distinctive conduction behaviors. Furthermore, the values of pulse polarizations [i.e., +(P*-P^) or −(P*-P^)] of BNdFCr and BSmFCr thin films were reasonably unchanged up to 1.4 × 1010 switching cycles.  相似文献   

2.
This study aimed at utilizing ultrasound treatment to further enhance the growth of lactobacilli and their isoflavone bioconversion activities in biotin-supplemented soymilk. Strains of lactobacilli (Lactobacillus acidophilus BT 1088, L. fermentum BT 8219, L. acidophilus FTDC 8633, L. gasseri FTDC 8131) were treated with ultrasound (30 kHz, 100 W) at different amplitudes (20%, 60% and 100%) for 60, 120 and 180 s prior to inoculation and fermentation in biotin-soymilk. The treatment affected the fatty acids chain of the cellular membrane lipid bilayer, as shown by an increased lipid peroxidation (P < 0.05). This led to increased membrane fluidity and subsequently, membrane permeability (P < 0.05). The permeabilized cellular membranes had facilitated nutrient internalization and subsequent growth enhancement (P < 0.05). Higher amplitudes and longer durations of the treatment promoted growth of lactobacilli in soymilk, with viable counts exceeding 9 log CFU/mL. The intracellular and extracellular β-glucosidase specific activities of lactobacilli were also enhanced (P < 0.05) upon ultrasound treatment, leading to increased bioconversion of isoflavones in soymilk, particularly genistin and malonyl genistin to genistein. Results from this study show that ultrasound treatment on lactobacilli cells promotes (P < 0.05) the β-glucosidase activity of cells for the benefit of enhanced (P < 0.05) isoflavone glucosides bioconversion to bioactive aglycones in soymilk.  相似文献   

3.

Purpose

To investigate diffusion-weighted (DWI) and dynamic contrast-enhanced MR imaging (DCE-MRI) as early response predictors in cervical cancer patients who received concurrent chemoradiotherapy (CCRT).

Materials and methods

Sixteen patients with cervical cancer underwent DWI and DCE-MRI before CCRT (preTx), at 1 week (postT1) and 4 weeks (postT2) after initiating treatment, and 1 month after the end of treatment (postT3). At each point, apparent diffusion coefficient (ADC) and DCE-MRI parameters were measured in tumors and gluteus muscles (GM). Tumor response was correlated with imaging parameters or changes in imaging parameters at each point.

Results

At each point, ADC, Ktrans and Ve in tumors showed significant changes (P < 0.05), as compared with those of GM (P > 0.05). PostT1 tumor ADCs showed a significant correlation with tumor size response at postT2 (P = 0.041), and changes in tumor ADCs at postT1 had a significant correlation with tumor size (P = 0.04) and volume response (P = 0.003) at postT2. In tumors, preTx Ktrans and Ve showed significant correlations with tumor size at postT3 (P = 0.011) and tumor size response at postT2 (P = 0.019), respectively.

Conclusion

DWI and DCE-MRI, as early biomarkers, have the potential to evaluate therapeutic responses to CCRT in cervical cancers.  相似文献   

4.
The structural and magnetic properties of 3-nm-thick CoPt alloys grown on WSe2(0 0 0 1) at various temperature are investigated. Deposition at room temperature leads to the formation of a chemically disordered fcc CoPt alloy with [1 1 1] orientation. Growth at elevated temperatures induces L10 chemical order starting at 470 K accompanied with an increase in grain size and a change in grain morphology. As a consequence of the [1 1 1] growth direction, the CoPt grains can adopt one of the three possible variants of the L10 phase with tetragonal c-axis tilted from the normal to the film plane direction at 54°. The average long-range order parameter is found to be 0.35(±0.05) and does not change with the increase in the deposition temperature from 570 to 730 K. This behavior might be related to Se segregation towards the growing facets and surface disorder effects promoted by a high surface-to-volume ratio. Magnetic studies reveal a superparamagnetic behavior for the films grown at 570 and 730 K in agreement with the film morphology and degree of chemical order. The measurements at 10 K reveal the orientation of the easy axis of the magnetization lying basically in the film plane.  相似文献   

5.
We investigate the TEA CO2 laser ablation of films of poly(methyl methacrylate), PMMA, with average MW 2.5, 120 and 996 kDa doped with photosensitive compounds iodo-naphthalene (NapI) and iodo-phenanthrene (PhenI) by examining the induced morphological and physicochemical modifications. The films casted on CaF2 substrates were irradiated with a pulsed CO2 laser (10P(20) line at 10.59 μm) in resonance with vibrational modes of PMMA and of the dopants at fluences up to 6 J/cm2. Laser induced fluorescence probing of photoproducts in a pump and probe configuration is carried out at 266 nm. Formation of naphthalene (NapH) and phenanthrene (PhenH) is observed in NapI and PhenI doped PMMA, respectively, with relatively higher yields in high MW polymer, in similarity with results obtained previously upon irradiation in the UV at 248 nm. Above threshold, formation of photoproducts is nearly complete after 200 ms. As established via optical microscopy, bubbles are formed in the irradiated areas with sizes that depend on polymer MW and filaments are observed to be ejected out of the irradiated volume in the samples made with high MW polymer. The implications of these results for the mechanisms of polymer IR laser ablation are discussed and compared with UV range studies.  相似文献   

6.
This study aimed to evaluate the effect of ultrasound treatment on the cholesterol removing ability of lactobacilli. Viability of lactobacilli cells was significantly increased (P < 0.05) immediately after treatment, but higher intensity of 100 W and longer duration of 3 min was detrimental on cellular viability (P < 0.05). This was attributed to the disruption of membrane lipid bilayer, cell lysis and membrane lipid peroxidation upon ultrasound treatment at higher intensity and duration. Nevertheless, the effect of ultrasound on membrane properties was reversible, as the viability of ultrasound-treated lactobacilli was increased (P < 0.05) after fermentation at 37 °C for 20 h. The removal of cholesterol by ultrasound-treated lactobacilli via assimilation and incorporation of cholesterol into the cellular membrane also increased significantly (P < 0.05) upon treatment, as observed from the increased ratio of membrane C:P. Results from fluorescence anisotropies showed that most of the incorporated cholesterol was saturated in the regions of phospholipids tails, upper phospholipids, and polar heads of the membrane bilayer.  相似文献   

7.
We measured the heat capacity of CeIrSi3 (100 mK<T<6 K) under high pressure up to P=1.38 GPa. The measurements have been used a quasiadiabatic method utilizing a CuBe piston-cylinder pressure cell in a dilution refrigerator. At 0 GPa, a sharp anomaly which indicates the antiferromagnetically transition is observed at TN=5 K. TN decreases monotonically with increasing pressure up to P=1.38 GPa. The magnetic entropy is released below TN only 19% of R ln 2 at 0 GPa. And the magnetic entropy decreases with increasing pressure up to 1.38 GPa, 64% compared to that at 0 GPa.  相似文献   

8.
CeO2 films were prepared on LaMnO3/MgO/Gd2Zr2O7 multi-coated Hastelloy C276 tapes by laser chemical vapor deposition at different laser power (PL) from 46 to 101 W. Epitaxial (1 0 0) CeO2 films were prepared at PL = 46-93 W (deposition temperature, Tdep = 705-792 K). Epitaxial CeO2 films had rectangular-shaped grains at PL = 46-77 W (Tdep = 705-754 K), while square-shaped grains were obtained at PL = 85-93 W (Tdep = 769-792 K). CeO2 films showed a columnar microstructure. Epitaxial (1 0 0) CeO2 films with rectangular grains exhibited full width at half maximum of ω-scan on (2 0 0) reflection and ?-scan on (2 2 0) reflection of 3.4-3.2° and 6.0-7.2°, respectively. The deposition rate of the epitaxial (1 0 0) CeO2 films had a maximum of 4.6 μm h−1 at PL = 77 W (Tdep = 754 K).  相似文献   

9.
We prepared Al2O3 films by laser chemical vapor deposition (LCVD) using a diode laser and aluminum acetylacetonate (Al(acac)3) precursors and investigated the effects of laser power (PL), deposition temperature (Tdep), and total pressure (Ptot) in a reaction chamber on the crystal phase, microstructure, and deposition rate (Rdep). An amorphous phase was obtained at PL = 50 W, whereas an α-phase was obtained at PL > 100 W. At PL = 150 and 200 W (1 0 4)- and (0 1 2)-oriented α-Al2O3 films were obtained, respectively. The Rdep of α-Al2O3 films increases with decreasing PL and Ptot. Single-phase α-Al2O3 film was obtained at Tdep = 928 K, which is about 350 K lower than that obtained by conventional thermal CVD using Al(acac)3 precursor.  相似文献   

10.
An initial stage of oxidation of a cesium-covered Ni (1 1 0) surface has been studied by metastable-induced electron spectroscopy (MIES) and low-energy electron diffraction (LEED). The MIES brought spectra with Cs 6s induced peak (P6s), Cs 5p (P5p), O 2p induced peak (Pox) and a structure related to the substrate Ni 3d states (P3d). The work function change Δφ showed an oscillatory behavior in the progress of surface oxidation. The process is divided into three stages: (i) at low O2 exposures, Δφ > 0 with unchanging P5p and P6s; (ii) at moderate exposures, Δφ < 0 with a drastic decrease in the P6s intensity; (iii) at higher exposures, Δφ > 0 with shifts of peaks P5p and Pox to higher energies, together with an appearance of peak P3d. A three-step model of initial oxidation of alkali-covered Ni (1 1 0) surfaces is presented.  相似文献   

11.
The adsorption of alginate (Alg) onto the surface of in water dispersed Fe3O4 nanoparticles and zeta potential of alginate-coated Fe3O4 nanoparticles have been investigated to optimize the colloidal stability of Alg-coated Fe3O4 nanoparticles. The adsorption amount of Alg increased with the decrease of adsorption pH. The zeta potential of Fe3O4 nanoparticles shifted to a lower value after adsorption of Alg. The lower adsorption pH was the lower zeta potential of Fe3O4 nanoparticles became. The Alg-coated Fe3O4 nanoparticles were found to be stabilized by steric and electrostatic repulsions. Those prepared at pH 6 were not stable around pH 5, and those prepared at pH 4 became unstable at pH below 3.5. Alg of Mw 45 kDa was a little bit more adsorbed onto nanoparticles surface than that of Mw 24 kDa. An average Fe3O4 core size of 9.3 ± 1.7 nm was found by transmission electronic microscopy. An average hydrodynamic diameter of 30-150 nm was measured by photon correlation spectroscopy. However, an average core size of 10 nm and an average hydrodynamic diameter of 38 nm were estimated from the magnetization curve of the concentrated magnetic fluids (MFs). The maximum available saturation magnetization of MFs was about 3.5 kA/m.  相似文献   

12.
W.B. Mi 《Applied Surface Science》2006,253(4):1830-1835
N-doped FePt-C nanocomposite films were fabricated using facing-target sputtering method under different N2 partial pressures (PN) at room temperature. Annealing at 650 °C turns the amorphous films into ordered structures. Nitrogen doping not only make the ordering of FePt particles easier than the ordering in FePt-C films, due to the enhanced diffusivity of Fe and Pt atoms, but also effectively limits the growth of the FePt particles during the thermal induced ordering, especially for the annealed films fabricated at PN = 40%, where the average size of well-isolated FePt particles is only ∼8 nm. The particle size reduction and the enhanced diffusion of Fe and Pt atoms can be ascribed to the desorption of doped N atoms and dissociation of FeN bonds during annealing. The room-temperature coercivity of the samples decreases with the PN due to the particle size reduction and thus the enhancement of the thermal agitation for small particles during the magnetizing procedure.  相似文献   

13.
Aminated-CoFe2O4/SiO2 magnetic nanoparticles (NPs) were prepared from primary silica particles using modified StÖber method. Glucose oxidase (GOD) was immobilized on CoFe2O4/SiO2 NPs via cross-linking with glutaraldehyde (GA). The optimal immobilization condition was achieved with 1% (v/v) GA, cross-linking time of 3 h, solution pH of 7.0 and 0.4 mg GOD (in 3.0 mg carrier). The immobilized GOD showed maximal catalytic activity at pH 6.5 and 40 °C. After immobilization, the GOD exhibited improved thermal, storage and operation stability. The immobilized GOD still maintained 80% of its initial activity after the incubation at 50 °C for 25 min, whereas free enzyme had only 20% of initial activity after the same incubation. After kept at 4 °C for 28 days, the immobilized and free enzyme retained 87% and 40% of initial activity, respectively. The immobilized GOD maintained approximately 57% of initial activity after reused 7 times. The KM (Michaelis-Menten constant) values for immobilized GOD and free GOD were 14.6 mM and 27.1 mM, respectively.  相似文献   

14.
15.
A typical composition of the system Ce1  xGdxO2  δ with x = 0.15 (CGO15) has been synthesized by auto-combustion method. DTA/TGA of the precursor compound indicated the completion of reaction at about 270 °C. Greater than 95% of the theoretical density has been achieved by sintering at 1300 °C for 10 h. Single phase formation in as-burnt stage has been confirmed by its powder X-ray diffraction (XRD) pattern. The structural morphology was studied employing bright field transmission electron micrograph (BFTEM) and high resolution transmission electron micrograph (HRTEM). BFTEM image indicates that particles are highly agglomerated and appear to be dispersed in amorphous matrix. Also BFTEM image reveals that the average particle size is 26 ± 5 nm. The presence of amorphous phase in as-prepared ash was also confirmed by HRTEM and selected area diffraction (SAD). The scanning electron micrograph (SEM) of the thermally etched system shows grains having an average size of 400 nm. Impedance measurements have been made in the frequency range 1 Hz to 1.3 MHz between 200 and 500 °C and the total conductivity was measured. An enhanced conductivity value is observed which may make this system suitable for application as a solid electrolyte material for intermediate temperature solid oxide fuel cells (IT-SOFCs).  相似文献   

16.
A strong optogalvanic effect has been observed in a negative glow of a miniature neon discharge lamp using tunable pulse dye laser pumped by a copper vapor laser. A comparative study on temporal evolution of optogalvanic signal in a positive and negative dynamic resistance region of the discharge is described. Dye laser beam was tuned to various neon transitions 1si → 2pj (Paschen notations) within 570-617 nm wavelength range. Anomalous behavior of optogalvanic signal was observed at 588.2 nm for (1s5 → 2p2) neon transition at low discharge current (<220 μA). This anomalous behavior is the attributes of damped oscillations of optogalvanic signal that correlate with negative dynamic resistance (dV/di < 0) of the discharge. Penning ionization at low discharge current and small energy mismatch is assumed to be the main cause of the negative dynamic resistance. Penning ionization process has been explained by resonantly ionizing energy transfer via collisions between neon buffer gas atoms in the lowest metastable state (1s5) and electrode sputtered atoms in ground state using their partial energy level diagram.  相似文献   

17.
A new two-dimensional (2-D) optical code division multiple access (OCDMA) scheme to increase the achievable system capacity is proposed. The code exhibits good cross-correlation property time and wavelength shift. Performances are analyzed on code size and correlation properties affecting two important system parameters, bit error rate (BER) as a function of cardinality generated and optical power transmission requirement. The proposed system can effectively suppress phase-induced intensity noise (PIIN) and has multi-access interference (MAI) cancellation property. Results in a good agreement indicate that 2-D modified double weight (MDW) offers 163.7% and 336.2% larger cardinality compare to 2-D perfect difference code (PDC) and 2-D modified quadratic congruence (MQC) code. By increasing spatial code (N) and keeps similar code length system performance can be further optimized. 2-D MDW (M = 45, N = 18) accommodates 252.2% and 18.3% cardinality increment and low effective transmitted power (Psr) at −17.9 dBm, compare to 2-D MDW (M = 247, N = 3) and (M = 84, N = 9) at 10−9 BER error floor. The architecture of the spectral/spatial MDW OCDMA system with property of MAI cancellation is presented.  相似文献   

18.
This work presents the structural characterization of nanoclusters formed from a-Si:H/Ge heterostructures processed by rapid thermal annealing (RTA) at 1000 °C for annealing times varying between 30 s and 70 s. The a-Si:H layers were grown on electron cyclotron resonance (ECR) using SiH4 and Ar precursor gases. The Ge layer was grown in an e-beam evaporation system. The structural characterizations were performed by high-resolution X-ray diffractometer (HRXRD) on grazing incidence X-ray reflection mode (GIXRR) and micro-Raman measurements. The average grain size, Ge concentration (xGe) and strain were estimated from Lorentzian GIXRR peak fit. The average grain size varied from 3 nm to 7.5 nm and decreased with annealing time. The xGe increase with annealing time and varied from 8% to 19%, approximately. The strain calculated for (1 1 1), (2 2 0) and (3 1 1) peaks at 40 s, 50 s, 60 s and 70 s annealing time suggest the geometrical changes in nanoclusters according to process time.  相似文献   

19.
The electronic conductivity of pure ceria with two different impurity levels is examined by dc polarization technique based on the Hebb-Wagner ion blocking method. The impurity level for the ceria with 99.999% purity (5N-CeO2) is about 1/100 of that with 99.9% purity (3N-CeO2) as confirmed by the fluorescence intensity of impurities obtained by Raman spectroscopy. The electronic conductivity for the 5N-CeO2 was measured at T = 973 K to 1173 K, and the results are essentially the same as those for the 3N-CeO2. The electronic conductivity increases with decreasing of P(O2) following slope values of − 1/4 to − 1/6. The − 1/4 dependent region becomes narrower for the 5N-CeO2 than that for the 3N-CeO2. For both types of ceria, the P(O2) independent region appears in the same region of higher than 10− 2 and 10− 3 MPa at T = 1073 K and 973 K, respectively. Activation energies for the 5N-CeO2 were 2.2 eV, 2.6 eV and 1.9 eV in P(O2) dependent regions of − 1/6, − 1/4 and 0, respectively.  相似文献   

20.
We have measured sooting tendencies of 72 nonvolatile aromatic hydrocarbons, only five of which have been previously reported in the literature. The tested compounds include long-chain alkylbenzenes up to tridecylbenzene, methyl-substituted benzenes, naphthalenes, biaryls, and polycyclic aromatic hydrocarbons (PAH) with up to four rings. Sooting tendency was defined as the maximum soot concentration fv,max in a methane/air coflow nonpremixed flame with 5-80 ppm of the aromatic added to the fuel. The fv,max were converted into Yield Sooting Indices (YSI’s) by the equation YSI = Cfv,max + D, where C and D are constants chosen so that YSI-2-heptanone = 17 and YSI-phenanthrene = 191. The aromatics were dissolved in 2-heptanone and added to the fuel mixture with a syringe pump. Soot concentrations were measured with laser-induced incandescence (LII). The burner and fuel lines were heated; time-resolved soot measurements verified that all of the test compounds were quantitatively transmitted to the flame without losses to the walls. The uncertainties in the results range from ±3 to ±10%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号