首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
John C 《Ultrasonics》2005,43(6):467-479
The diagnosis of degenerative changes in human teeth is of general interest because early detections can avoid greater health problems and further weakening effects. Since the wear of teeth determines their stability and lifetime in relation to the physiological load, an ultrasonic survey of any dimensional changes of the enamel layer and especially of the dentin wall thickness may be very helpful. However, an ultrasonographic diagnosis requires first to determine the anisotropic human tooth properties at clinically relevant locations and to simulate wave propagation phenomena in inhomogeneous tooth models with proper dimensions. The first article of a series that provides modular data of mineralized tissues in human teeth at the cemento-enamel junction (CEJ) deals with an ultrasonic method for measuring the asymmetry of dimensional characteristics of extracted human teeth and their ultrasonic path lengths (UPL). Heavily attenuating tooth halves were investigated with respect to the symmetry of normal and inclined oppositely directed radial ultrasonic paths. The measured UPLs ranged from 1.2 mm to 4.4 mm. The relative difference in inclined UPLs between the left and the right tooth halves reaches almost 30%. This reveals a large asymmetry. The mean difference of angles that represent fastest path lengths was 2.2+/-8.1 degrees, which indicates large asymmetry and anisotropy. Several aspects, which are required for a proper integration of asymmetric data into models designed for medical element engineering and simulation (MEES), are discussed.  相似文献   

2.
Jung SS  Kim YT  Pu YC  Kim MG  Kim HC 《Ultrasonics》2006,44(1):12-16
We report a non-contact and non-invasive method of sound speed measurement by optical probing of deflected laser beam due to normally incident degenerated shock wave. In this study the shock wave from an exploding wire was degenerated to an ordinary sound wave at the distance exceeding 0.23 m. Temporal resolution of the deflected beam signal was improved by passing through an adequate electronic high-pass filter, as a result we obtained a better temporal resolution than that of the acoustic pressure detection by PZT transducer in terms of rising time. The spatial resolution was improved by passing the refracted beam signal into the edge of focusing lens to make a larger deflection angle. Sound speed was calculated by monitoring the time of flight of transient deflected signal at the predetermined position. Sound speed has been measured in air, distilled water and acryl, agreed well with the published values. The sound speed measured in the solution of glycerin, magnesium sulfate (MgSO4), and dimethylformamide with various mole fractions also agrees within 3% of relative error with those measured in the present work by ultrasonic pulse echo method. The results suggest that the method proposed is to be reliable and reproducible.  相似文献   

3.
In this work, the feasibility of texture parameters extracted from B-Mode images were explored in quantifying medium temperature variation. The goal is to understand how parameters obtained from the gray-level content can be used to improve the actual state-of-the-art methods for non-invasive temperature estimation (NITE). B-Mode images were collected from a tissue mimic phantom heated in a water bath. The phantom is a mixture of water, glycerin, agar-agar and graphite powder. This mixture aims to have similar acoustical properties to in vivo muscle. Images from the phantom were collected using an ultrasound system that has a mechanical sector transducer working at 3.5 MHz. Three temperature curves were collected, and variations between 27 and 44 °C during 60 min were allowed. Two parameters (correlation and entropy) were determined from Grey-Level Co-occurrence Matrix (GLCM) extracted from image, and then assessed for non-invasive temperature estimation. Entropy values were capable of identifying variations of 2.0 °C. Besides, it was possible to quantify variations from normal human body temperature (37 °C) to critical values, as 41 °C. In contrast, despite correlation parameter values (obtained from GLCM) presented a correlation coefficient of 0.84 with temperature variation, the high dispersion of values limited the temperature assessment.  相似文献   

4.
Locating point of impact in anisotropic fiber reinforced composite plates   总被引:1,自引:0,他引:1  
Kundu T  Das S  Martin SA  Jata KV 《Ultrasonics》2008,48(3):193-201
The conventional triangulation technique cannot predict the point of impact in an anisotropic composite plate because the triangulation technique assumes that the wave speed is independent of the direction of propagation which is not the case for anisotropic plates. An alternative method based on the optimization scheme was proposed by Kundu et al. [T. Kundu, S. Das, K.V. Jata, Point of impact prediction in isotropic and anistropic plates from the acoustic emission data, J. Acoust. Soc. Am. 122, 2007, 2057-2066] to locate the point of impact in plates by analyzing the time of arrival of the ultrasonic signals received by the passive sensors attached to the plate. In this paper, that objective function is modified further to overcome the inherent difficulties associated with multiple singularities and to maximize the efficiency of the acoustic emission data for multiple receiving sensors. With this modified objective function the impact point on an anisotropic composite plate is predicted from the acoustic emission data. Experiments are carried out by dropping steel and ping pong balls on a graphite-epoxy composite plate and recording acoustic signals by passive transducers adhesively bonded to the plate at three different locations. The impact point is predicted by the proposed method and compared with the actual location of impact.  相似文献   

5.
The generation of laser pulses with energies of >40 mJ at 25 Hz and durations variable from 15 ps to 45 ps using an Nd:yttrium aluminum garnet laser mode-locked with a Stankov nonlinear mirror is demonstrated. This laser is used to pump an optical parametric generator-amplifier, which is tunable in the visible spectral range.  相似文献   

6.
Taking into account the effects of thermal diffusion and optical penetration, as well as the finite width and duration of the laser source, the laser-generated ultrasonic force source at surface vicinity is presented. The full acoustic fields of laser-generated ultrasonic bulk wave are obtained and displayed in transversely isotropic plate. The features of laser-generated ultrasound bulk waves are analyzed. The features of laser-generated ultrasonic bulk wave are in good agreement with the theoretical results (the phase velocity surfaces), demonstrating the validity of this simulation. The numerical results indicate that the features of laser-generated ultrasound waveforms in anisotropic specimen, different from the case in isotropic materials, have a close relation with the propagating plane and propagation direction. This method can provide insight to the generation and propagation of laser-generated ultrasonic bulk wave in transversely isotropic material.  相似文献   

7.
It has been shown recently that shear horizontal acoustic waves propagating in piezoelectric plates whose thickness h is much less than the acoustic wavelength λ possess a number of attractive properties for use in sensor and signal processing applications. In order to exploit the potential benefits of these waves, however, one needs to fabricate devices on very thin plates. We have developed a suitable fabrication method which can be used to realize devices on such thin plates. In this method, the device is first fabricated on a plate of normal thickness (approximately 500 μm) and the substrate is then lapped from the back side to reduce the thickness. The technique has been utilized to realize devices on plates of thickness less than 70 μm. A shear horizontal plate acoustic wave (SH-PAW) delay line of fundamental resonant frequency greater than 25 MHz and insertion loss less than 7 dB has been realized on a 60 μm thick Y – cut, X – propagation lithium niobate substrate. The device also shows strong response near the third harmonic frequency of 75 MHz.  相似文献   

8.
The output power for terahertz lasers influenced drastically by slight changes in the transmittance of the output coupler for a certain terahertz frequency has been discussed in the paper. Therefore it is necessary to design an output coupler whose transmittance does not rapidly modulate with frequency. To obtain the flat and accurate transmittance spectrum in a narrow wavenumber interval (say 3 cm−1), a wedged output coupler is proposed. This conclusion has been revealed after analyzing the disadvantages of two types of capacitive strip-grating output couplers, and theoretically studying its transmission properties. The theoretical results show that the coupler can not only provide flat and accurate transmittance spectrum and thus effectively suppress the etalon effects occurring frequently in previous experiments but also thoroughly eliminate the transmittance sensitivity to the slight shift of substrate thickness. Moreover, the wedged substrate of the improved output coupler can be used repeatedly in the process of adjusting the strip-grating parameters to meet various transmittance requirements for optically pumped terahertz lasers.  相似文献   

9.
In this work we have studied pure and thulium- and chromium-doped ZBLAN glasses irradiated by ultra-short laser pulses. A Ti:sapphire CPA system was used, producing a 500 Hz train of pulses, centered at 830 nm, with 375 μJ of energy and 50 fs of duration (FWHM). The beam was focused by a 20 mm lens, producing a converging beam with a waist of 12 μm. The absorption spectra before and after laser irradiation were obtained showing production of color centers in pure, thulium-doped and chromium-doped ZBLAN glasses. A damage threshold of 9.56 T W/cm2 was determined for ZBLAN.  相似文献   

10.
This article develops a model for the study of the transient ultrasonic waves radiated by a transducer in a liquid and transmitted into a solid through a plane interface. The method is an extension to the transient case, of the angular spectrum method previously developed for the monochromatic case. It is based on the decomposition of the ultrasonic field, in impulse plane waves. The radiated waveform is calculated at any point in the field by a simple summation of these impulse plane waves, where the propagation delay and the refraction have been taken into account. These plane waves are, first of all, delayed by an amount of time corresponding to the travel time up to the considered field point. The transmission through the plane interface is taken into account by using Snell refraction laws and transmission coefficients. In the obtained results all the waves previously described by other authors are highlighted: direct wave, edge waves, head waves as well as subsurface waves with a clear resolution between compression and shear waves.  相似文献   

11.
An antireflective structure with two-dimensional 300-nm periodicity was fabricated on a phosphate glass surface using an imprinting process with a SiC mold. The optimized structure designed using RCWA calculation was a convex circular cone sharing the ridge line of adjacent cones. The SiC mold was fabricated using electron beam drawing and subsequent reactive ion etching with CHF3 and O2 gases. The glass’ surface reflectance was estimated as 0.2% at 530 nm wavelength, which was approximately 1/20 that of the optically polished surface.  相似文献   

12.
CaTiO3:Pr3+ films were deposited on different substrates such as Al2O3 (0 0 0 1), Si (1 0 0), MgO (1 0 0), and fused silica using pulsed laser deposition method. The crystallinity and surface morphology of these films were investigated by XRD and SEM measurements. The films grown on the different substrates have different crystallinity and morphology. The FWHM of (2 0 0) peak are 0.18, 0.25, 0.28, and 0.30 for Al2O3 (0 0 0 1), Si (1 0 0), MgO (1 0 0), and fused silica, respectively. The grain sizes of phosphors grown on different substrates were estimated by using Scherrer's formula and the maximum crystallite size observed for the thin film grown on Al2O3 (0 0 0 1). The room temperature PL spectra exhibit only the red emission peak at 613 nm radiated from the transition of (1D2 → 3H4) and the maximum PL intensity for the films grown on the Al2O3 (0 0 0 1) is 1.1, 1.4, and 3.7 times higher than that of the CaTiO3:Pr3+ films grown on MgO (1 0 0), Si (1 0 0), and fused Sillica substrates, respectively. The crystallinity, surface morphology and luminescence spectra of thin-film phosphors were highly dependent on substrates.  相似文献   

13.
In the present paper, we focus on the geometrical and electronic changes in palladium surface structure which appeared during its interaction with hydrogen in the presence of an external electric field. The interaction process was examined by using the field ion microscopy (FIM) as well as the field emission microscopy (FEM) techniques. In order to study the geometrical changes in substrate surface structure, the distance distribution function (DDF) was constructed on the basis of FIM patterns of both a clean and hydrogen-covered palladium surface. The electronic changes were examined by the measurement of the total energy distribution (TED) of electrons emitted from the palladium tip surface. The most pronounce examples of such changes are an expansion of the equilibrium interatomic distance in palladium surface and a shift of the Fermi level of the metal. These changes may be explained among others by palladium hydrides formation. This process is the most efficient if the field strength exceeds 23 V/nm.  相似文献   

14.
Bi3.99Ti2.97V0.03O12 (BTV) thin films were grown by pulsed laser deposition at substrate temperatures ranging between 650 and 750 °C. The structural phase, and orientation of the deposited films were investigated in order to understand the effect of the deposition parameters on the properties of the BTV films. As the substrate temperature was increased to 700 °C, the films started showing a tendency of assuming a c-axis preferred orientation, while at lower temperatures polycrystalline films were formed. The Au/BTV/Pt capacitor showed an interesting dependence of the remnant polarization (Pr) as well as dc leakage current values on the growth temperature. The film deposited at 675 °C showed a very large 2Pr of 42 μC cm−2, which is the largest for BTV thin films among the values reported so far.  相似文献   

15.
In this paper, the Ca2SnO4:Eu3+ phosphor was prepared by low-temperature sol-gel method. The influence of calcined temperature and time on structure of Ca2SnO4:Eu3+ was investigated by using X-ray powder diffraction (XRD). The experimental results show that the dried gel was crystallized to the pure orthorhombic phase after calcination at 900 °C in air for 6 h. These phosphors have displayed bright red color under a UV source. The richness of the red color has been verified by determining their color coordination from the CIE standard charts, and this red emission has been assigned to 5D07F2 electric dipole transition at 616 and 620 nm. The excellent luminescence properties make it possible as a good candidate for plasma display panel (PDP) application.  相似文献   

16.
N-doped ZnO films were produced using N2 as N source by metal-organic chemical vapor deposition (MOCVD) system which has been improved with radio-frequency (RF)-assisted equipments. The data of secondary ion mass spectroscopy (SIMS) indicate that the concentration of N in N-doped ZnO films is around 5 × 1020 cm−3, implying that sufficient incorporation of N into ZnO can be obtained by RF-assisted equipment. On this basis, the structural, optical and electrical properties of Al-N codoped ZnO films were studied. Then, the effect of RF power on crystal quality, surface morphologies, optical properties was analyzed using X-ray diffraction, atomic force microscopy and photo-luminescence methods. The results illustrate that the RF plasma is the key factor for the improvement of crystal quality. Then the observation of A0X recombination associated with NO acceptor in low-temperature PL spectrum proved that some N atoms have occupied the positions of O atoms in ZnO films. Hall measurements shown that p-type ZnO film deposited on quartz glasses was obtained when RF power was 150 W for the Al-N codoped ZnO films, while the resistivity of N-doped ZnO films was rather high. Compared with the Al-doped ZnO film, the obviously increased resistivity of codoped films indicates that the formation of NO acceptors compensate some donors in ZnO films effectively.  相似文献   

17.
Nanosecond (∼100 ns) pulsed (10 Hz) Nd:YAG laser operating at the wavelength (λ) of 1064 nm with pulse energies of 0.16-1.24 mJ/cm2 has irradiated 10Sm2O3·40BaO·50B2O3 glass. It is demonstrated for the first time that the structural modification resulting the large decease (∼3.5%) in the refractive index is induced by the irradiation of YAG laser with λ=1064 nm. The lines with refractive index changes are written in the deep inside of 100-1000 μm depths by scanning laser. The line width is 1-13 μm, depending on laser pulse energy and focused beam position. It is proposed that the samarium atom heat processing is a novel technique for inducing structural modification (refractive index change) in the deep interior of glass.  相似文献   

18.
The white light continuum (WLC) generated in water/D2O mixture by pumping with the fundamental of ps Nd+3:YAG laser has been used as a variable frequency source for the sum frequency generation as well as for its amplification. 35 ps long pulses with 8 mJ energy at 1064 nm were mixed collinearly with the WLC generated by the same laser beam in a 20 mm thick BBO crystal. The obtained tunable output has been identified as the sum frequency between the fundamental and a portion of the WLC with the required phase matching. Theoretical simulations are also given along with a few initial experiments to use this combination for the difference frequency generation (optical parametric amplification) under non-collinear geometry.  相似文献   

19.
Zn-Sn-O (ZTO) films with continuous compositional gradient of Sn 16-89 at.% were prepared by co-sputtering of two targets of ZnO and SnO2 in a combinatorial method. The resistivities of the ZTO films were severely dependent on oxygen content in sputtering gas and Zn/Sn ratio. Except for the films with Sn 16 at.%, all the as-prepared films were amorphous and maintaining the stable amorphous states up to the annealing temperature of 450 °C. Annealing at 650 °C resulted in crystallization for all the composition, in which ZnO, Zn2SnO4, ZnSnO3, and SnO2 peaks were appeared successively with increasing Sn content. Above Sn 54 at.%, the ZTO films were deduced to have a local structure mixed with ZnSnO3 and SnO2 phases which were more conductive and stable in thermal oxidation than ZnO and Zn2SnO4 phases. The lowest resistivity of 1.9 × 10−3 Ω cm was obtained for the films with Sn 89 at.% when annealed at 450 °C in a vacuum. The carrier concentrations of the amorphous ZTO films that contained Sn contents higher than 36 at.% and annealed at 450 °C in a vacuum were proportional to the Sn contents, while the Hall mobilities were insensitive to Sn contents and leveling in the range of 23-26 cm2/V s.  相似文献   

20.
Xiaoyan Zhang  Wei Xu 《Physica A》2007,385(1):95-104
In this paper, we consider the phenomenon of stochastic resonance (SR) in an asymmetric bistable system with coloured noises and periodic rectangular signal. Expression of the signal-to-noise ratio (SNR) has been obtained under the adiabatic limit. We investigate the effect of any system parameter (such as p, q, r, τ1, τ2) on the SNR. The plot of SNR-τ1 shows SR for some values of the additive noise self-correlation time τ2, but not for the whole range of τ2. The system bias r suppresses the SNR. When the intensity of additive noise q is increased, the SR phenomenon disappears in the plot of SNR-p, but the plot of SNR-q presents SR for almost all values of the multiplicative noise intensity p.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号