首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 526 毫秒
1.
Oberti S  Neild A  Möller D  Dual J 《Ultrasonics》2008,48(6-7):529-536
The use of acoustic radiation forces for the manipulation and positioning of micrometer sized particles has shown to be a promising approach. Resonant excitation of a system containing a particle laden fluid filled cavity, can (depending on the mode excited) result in positioning of the particles in parallel lines (1-D) or distinct clumps in a grid formation (2-D) due to the high amplitude standing pressure fields that arise in the fluid. In a broader context, the alignment of particles using acoustic forces can be used to assist manipulation processes which utilise an external mechanical tool, for instance a microgripper. In such a system, particles can be removed sequentially from a line formed by acoustic forces within a microfluidic channel, hence allowing a degree of automation. In order to fully automate the gripping process, the particles must be confined to a repeatable and accurate location in two dimensions (assuming that in the third dimension they sit on the lower surface of the channel). Only in this way it is possible to remove subsequent particles by simply bringing the gripper to a known location and activating its fingers. This combined use of acoustic forces and mechanical gripping requires that one extremity of the channel is open. However, the presence of the liquid-air interface which occurs at this opening, causes the standing pressure field to decay to zero towards the opening. In a volume of liquid in proximity to the interface positioning of particles by acoustic forces is therefore no longer possible. In addition, the longitudinal gradient of the field can cause a drift of particles towards the longitudinal center of the channel at some frequencies, undesirably moving them further away from the interface, and so further from the gripper. As a solution the use of microfluidic flow induced drag forces in addition to the acoustic force potential has been investigated.  相似文献   

2.
Qiang Tang 《中国物理 B》2022,31(4):44301-044301
Rotational manipulation of massive particles and biological samples is essential for the development of miniaturized lab-on-a-chip platforms in the fields of chemical, medical, and biological applications. In this paper, a device concept of a two-dimensional acoustofluidic chamber actuated by multiple nonlinear vibration sources is proposed. The functional chamber enables the generation of acoustic streaming vortices for potential applications that include strong mixing of multi-phase flows and rotational manipulation of micro-/nano-scale objects without any rotating component. Using numerical simulations, we find that diversified acoustofluidic fields can be generated in the chamber under various actuations, and massive polystyrene beads inside can experience different acoustophoretic motions under the combined effect of an acoustic radiation force and acoustic streaming. Moreover, we investigate and clarify the effects of structural design on modulation of the acoustofluidic fields in the chamber. We believe the presented study could not only provide a promising potential tool for rotational acoustofluidic manipulation, but could also bring this community some useful design insights into the achievement of desired acoustofluidic fields for assorted microfluidic applications.  相似文献   

3.
This paper reports a method to generate tunable bottle beams using an ultrasonic lens, by which the bottle position can be precisely adjusted with the change of the acoustic frequency. Therefore, the position of a single particle or bubble in liquid can be manipulated without using phased array which is costly and huge with complex circuits. Furthermore, we introduced this method to multiple bubble manipulation using acoustic holography. The bottle properties against frequency are theoretically and experimentally analyzed. It is shown that the bottle position depends almost linearly on the operating frequency, which provides a basis for the precise manipulation of bubbles and particles. In addition, the relationship between the acoustic radiation force and the drag force under different incident acoustic pressures is considered, establishing a limit on the moving velocity of the trapped particles. The ultrasonic field observation is further demonstrated by Schlieren imaging system. The proposed method has potential biomedical applications, such as more flexible cell manipulation and targeted drug delivery in vivo, as well as potential applications in the study of chemical reactions between micro objects.  相似文献   

4.
声操控微粒研究进展*   总被引:1,自引:0,他引:1       下载免费PDF全文
蔡飞燕  孟龙  李飞  郑海荣 《应用声学》2018,37(5):655-663
声操控微粒是利用声波与微粒之间动量和能量交换产生的声辐射力操纵微粒的运动,具有非接触、生物兼容性好、无需对微粒进行化学生物标记、装置简单易集成等优点,在精密制造、精准医疗等领域具有广阔的应用前景,是当前操控领域的研究热点。该文主要综述最近十年声辐射力理论研究、声场调控方法以及微粒操控形式等方面的研究工作,并对声操控的未来发展方向进行了展望。  相似文献   

5.
Ultrasonic manipulation, which uses acoustic radiation forces, is a contactless manipulation technique. It allows the simultaneous handling of single or numerous particles (e.g., copolymer beads, biological cells) suspended in a fluid, without the need for prior localization. Here it is reported on a method for two-dimensional arraying based on the superposition of two in-plane orthogonally oriented standing pressure waves. A device has been built and the experimental results have been compared with a qualitative analytical model. A single piezoelectric transducer is used to excite the structure to vibration, which consists of a square chamber etched in silicon sealed with a glass plate. A set of orthogonally aligned electrodes have been defined on one surface of the piezoelectric. This allows either a quasi-one-dimensional standing pressure field to be excited in one of two directions or if both electrodes are activated simultaneously a two-dimensional pressure field to be generated. Two different operational modes are presented: two signals identical in amplitude and frequency were used to trap particles in oval shaped clumps; two signals with slightly different frequencies to trap particles in circular clumps. The transition between the two operational modes is also investigated.  相似文献   

6.
Developing microrobots for precisely manipulating micro/nanoscale objects has triggered tremendous research interest for various applications in biology, chemistry, physics, and engineering. Here, a novel hypersonic‐induced hydrodynamic tweezers (HSHTs), which use gigahertz nano‐electromechanical resonator to create localized 3D vortex streaming array for the capture and manipulation of micro‐ and nanoparticles in three orientations: transportation in a plane and self‐rotation in place, are presented. 3D vortex streaming can effectively pick up particles from the flow, whereas the high‐speed rotating vortices are used to drive self‐rotation simultaneously. By tuning flow rate, the captured particles can be delivered, queued, and selectively sorted through the 3D HSHTs. Through numerical simulations and theoretical analysis, the generation of the 3D vortex and the mechanism of the particles manipulation by ultrahigh frequency acoustic wave are demonstrated. Benefitting from the advantages of the acoustic and hydrodynamic method, the developed HSHTs work in a precise, noninvasive, label‐free, and contact‐free manner, enabling wide applications in micro/nanoscale manipulations and biomedical research.  相似文献   

7.
利用部分波展开法求解得到了Gauss声束入射下刚性和非刚性椭圆柱的声散射系数,推导了一般情况下的声辐射力矩表达式.在此基础上,通过一系列数值仿真详细分析了离轴距离、入射角度和束腰半径对声辐射力矩的影响.结果表明:正向与负向声辐射力矩均可以在一定条件下存在;低频情况下刚性椭圆柱比非刚性椭圆柱更容易产生较强的声辐射力矩;特定频率的入射声场可以激发出非刚性椭圆柱不同阶的共振散射模式,因而非刚性椭圆柱的声辐射力矩峰值与频率的关系更密切;增加束腰半径有利于扩大散射截面,进而增加椭圆柱的声辐射力矩.该研究结果预期可以为利用声辐射力矩实现粒子的可控旋转和流体黏度的反演提供一定的理论指导.  相似文献   

8.
Hill M  Townsend RJ  Harris NR 《Ultrasonics》2008,48(6-7):521-528
Several approaches have been described for the manipulation of particles within an ultrasonic field. Of those based on standing waves, devices in which the critical dimension of the resonant chamber is less than a wavelength are particularly well suited to microfluidic, or "lab on a chip" applications. These might include pre-processing or fractionation of samples prior to analysis, formation of monolayers for cell interaction studies, or the enhancement of biosensor detection capability. The small size of microfluidic resonators typically places tight tolerances on the positioning of the acoustic node, and such systems are required to have high transduction efficiencies, for reasons of power availability and temperature stability. Further, the expense of many microfabrication methods precludes an iterative experimental approach to their development. Hence, the ability to design sub-wavelength resonators that are efficient, robust and have the appropriate acoustic energy distribution is extremely important. This paper discusses one-dimensional modelling used in the design of ultrasonic resonators for particle manipulation and gives example of their uses to predict and explain resonator behaviour. Particular difficulties in designing quarter wave systems are highlighted, and modelling is used to explain observed trends and predict performance of such resonators, including their performance with different coupling layer materials.  相似文献   

9.
The possibility of using acoustic Bessel beams to produce an axial pulling force on porous particles is examined in an exact manner. The mathematical model utilizes the appropriate partial-wave expansion method in spherical coordinates, while Biot's model is used to describe the wave motion within the poroelastic medium. Of particular interest here is to examine the feasibility of using Bessel beams for (a) acoustic manipulation of fine porous particles and (b) suppression of particle resonances. To verify the viability of the technique, the radiation force and scattering form-function are calculated for aluminum and silica foams at various porosities. Inspection of the results has shown that acoustic manipulation of low porosity (<0.3) spheres is similar to that of solid elastic spheres, but this behavior significantly changes at higher porosities. Results have also shown a strong correlation between the backscattered form-function and the regions of negative radiation force. It has also been observed that the high-order resonances of the particle can be effectively suppressed by choosing the beam conical angle such that the acoustic contribution from that particular mode vanishes. This investigation may be helpful in the development of acoustic tweezers for manipulation of micro-porous drug delivery carrier and contrast agents.  相似文献   

10.
Holwill IL 《Ultrasonics》2000,38(1-8):650-653
Fluid dynamics modelling augmented with routines to simulate acoustic forces on aerosol particles has been used to investigate the potential of combining ultrasonic standing wave fields with optical particle analysis equipment. Simulations of particle dynamics in airstreams incorporating acoustic forces predict that particles in the 1-10 microns diameter range may be effectively focused to the velocity nodes of the standing wave field. Particles move to the velocity nodes within tens of milliseconds for acoustic frequencies of 10-100 kHz and at an acoustic energy density of 100 Jm-3. Larger particles are predicted to move to the velocity antinodes within similar times; however, there is a crossover region at approximately 15-20 microns particle diameter where longer times are predicted due to the competing forces driving particles to the vibration node and antinode. With sufficient transverse flow velocities the models predict that disturbances due to acoustic streaming can be overcome and a useful degree of focusing achieved for the aerosol particles. Results from a model demonstrating sampling and acoustic focusing of 3-9 microns aerosol particles to a 200 microns wide analysis area are presented.  相似文献   

11.
Oberti S  Neild A  Quach R  Dual J 《Ultrasonics》2009,49(1):47-252
Handling of micrometer sizes particles, such as biological cells or coated beads, plays a relevant role in the field of life science. A number of devices have been presented in the last years, in which acoustic forces generated by coupling the vibration of a solid structure excited by a piezoelectric transducer to the particle suspension are used to collect particles in lines or position them in clumps on a grid. Following the trend of lab-on-a-chip devices, efforts have been made to shrink the size of such systems, aiming at less reagent consumption and shorter reaction times. The majority of these systems consist of closed fluid filled volumes, typically channels. Here the use of an open fluid volume, a droplet, is examined. By exciting resonances into the droplet positioned on a surface, particles can be gathered into a line, two parallel lines or, as the frequency of excitation is increased, into more complex patterns. Such a concentration process will have useful applications in improved detection sensitivity of low concentration particulate solutions.  相似文献   

12.
Mechanics and Friction at the Nanometer Scale   总被引:2,自引:0,他引:2  
In this overview, we will give an introduction to experiments in which manipulation is used a means of uncovering the intrinsic response and dynamical behavior of small objects. Experiments done on individual particles reveal new and rich behaviors that are inaccessible to averaging methods. Experiments exploring the stiffness and toughness of carbon nanotubes will be presented showing that nanometer scale engineered materials can far outperform current engineering materials. Through AFM manipulation, imaging and force measurements, the stiffness of this material was found to equal or exceed diamond. Their toughness is also extraordinary. Due to their near crystalline perfection, carbon nanotubes are able to undergo strains exceeding 15% during bending without damage. Through AFM manipulation experiments, these large deformations have been shown to be highly reversible. Experiments in which the lateral force of manipulation of small objects across surfaces is measured show that friction at the nanometer scale occurs without wear processes and is an intrinsic property of the particular interface. Results are also presented showing anisotropic behavior in friction and movement due to commensurate lattice effects. At the nanometer scale, the contacting surfaces can be nearly perfect so that commensurate effects are not partially averaged out by many differently oriented domains. It has been shown that friction can very over an order of magnitude depending on the relative orientation of the contacting surfaces. The relative orientation of object and substrate lattices also can determine the modes of motion. In some cases the particle is confined to move in one direction. In other cases the relative orientation determines whether the particle rolls, rotates in-plane or slides. These effects may have implications on the fundamental mechanisms of friction. They provide a laboratory for testing different geometrical configurations of atoms sliding on atoms. The results may also have implications in the design of nanometer scale electromechanical mechanisms.  相似文献   

13.
We present a design of an acoustic levitator consisting of three pairs of opposite transducer arrays.Three orthogonal standing waves create a large number of acoustic traps at which the particles are levitated in mid-air.By changing the phase difference of transducer arrays,three-dimensional manipulation of particles is successfully realized.Moreover,the relationship between the translation of particles and the phase difference is experimentally investigated,and the result is in agreement with the theoretical calculation.This design can expand the application of acoustic levitation in many fields,such as biomedicine,ultrasonic motor and new materials processing.  相似文献   

14.
Neild A  Oberti S  Haake A  Dual J 《Ultrasonics》2006,44(Z1):e455-e460
The contactless movement of microparticles and cells to known locations within a fluid volume is of interest in the fields of microtechnology and life sciences. A device which can position such inhomogeneities suspended in a fluid at multiple locations is described and modeled. The device consists of a thin fluid layer contained in a channel etched into a silicon wafer. Waves are excited by a macro-piezoelectric plate with electrodes on the top and bottom surfaces and, as a result, waves propagate into the adjacent fluid. The result is a pressure field throughout the fluidic volume. When an inhomogeneity in a fluid is exposed to an ultrasonic field the acoustic radiation force results; this is found by integrating the pressure over the surface of the particle, retaining second order terms, and taking the time average. Thus, due to the presence of a pressure field in the fluid in which the particles are suspended, a force field is created. The particles are then collected at the locations of the force potential minima. In the device described here, the force field is used to position particles into lines. The locations of the particles are predicted by using a finite element model of the system. The experimental and modeling results, presented here, are in good agreement.  相似文献   

15.
提出了一种利用体声波微流阱在三维流体空间中捕获微米级颗粒的方法,制备了 2种体声波微流阱阵列,并采用有限元法进行仿真计算,求解方程得到一阶声场、二阶声场,仿真分析了聚苯乙烯微粒在流场中的运动情况.实验结果显示体声波微流阱能够快速、高效捕获三维流体空间中的微米级颗粒,实验结果与仿真结果吻合良好,圆柱型体声波微流阱与圆孔型...  相似文献   

16.
A phase superposition approach for generating arbitrarily accelerating beams is proposed, where the superimposed phase is composed of multiple sub‐phases, each of which determines an independent sub‐beam or sub‐trajectory. Further, an effective algorithm is developed to improve the uniformity of the intensity along the arbitrary trajectory by introducing phase‐shift factors. Experimental results are consistent with numerical simulations. The proposed method can be extended to nonparaxial fields, and it also breaks the previous trajectory restrictions. The arbitrarily accelerating optical beams can pave the way for optically moving particles along a predefined trajectory. The property of such beams following arbitrary trajectories is likely to give rise to new applications in wave front control, flexible optical manipulation, and optical transport and guidance of particles.  相似文献   

17.
Diversity of biomedical applications of acoustic radiation force   总被引:1,自引:0,他引:1  
  相似文献   

18.
Acoustic radiation forces offer a means of manipulating particles within a fluid. Much interest in recent years has focussed on the use of radiation forces in microfluidic (or “lab on a chip”) devices. Such devices are well matched to the use of ultrasonic standing waves in which the resonant dimensions of the chamber are smaller than the ultrasonic wavelength in use. However, such devices have typically been limited to moving particles to one or two predetermined planes, whose positions are determined by acoustic pressure nodes/anti-nodes set up in the ultrasonic standing wave. In most cases devices have been designed to move particles to either the centre or (more recently) the side of a flow channel using ultrasonic frequencies that produce a half or quarter wavelength over the channel, respectively.It is demonstrated here that by rapidly switching back and forth between half and quarter wavelength frequencies - mode-switching - a new agglomeration position is established that permits beads to be brought to any arbitrary point between the half and quarter-wave nodes. This new agglomeration position is effectively a position of stable equilibrium. This has many potential applications, particularly in cell sorting and manipulation. It should also enable precise control of agglomeration position to be maintained regardless of manufacturing tolerances, temperature variations, fluid medium characteristics and particle concentration.  相似文献   

19.
Qin Chang 《中国物理 B》2022,31(4):44302-044302
Acoustic manipulation is one of the well-known technologies of particle control and a top research in acoustic field. Calculation of acoustic radiation force on a particle nearby boundaries is one of the critical tasks, as it approximates realistic applications. Nevertheless, it is quite difficult to solve the problem by theoretical method when the boundary conditions are intricate. In this study, we present a finite element method numerical model for the acoustic radiation force exerting on a rigid cylindrical particle immersed in fluid near a rigid corner. The effects of the boundaries on acoustic radiation force of a rigid cylinder are analyzed with particular emphasis on the non-dimensional frequency and the distance from the center of cylinder to each boundary. The results reveal that these parameters play important roles in acoustic manipulation for particle-nearby complicated rigid boundaries. This study verifies the feasibility of numerical analysis on the issue of acoustic radiation force calculation close to complex boundaries, which may provide a new idea on analyzing the acoustic particle manipulation in confined space.  相似文献   

20.
Manipulation of micro-objects have been playing an essential role in biochemical analysis or clinical diagnostics. Among the diverse technologies for micromanipulation, acoustic methods show the advantages of good biocompatibility, wide tunability, a label-free and contactless manner. Thus, acoustic micromanipulations have been widely exploited in micro-analysis systems. In this article, we reviewed the acoustic micromanipulation systems that were actuated by sub-MHz acoustic waves. In contrast to the high-frequency range, the acoustic microsystems operating at sub-MHz acoustic frequency are more accessible, whose acoustic sources are at low cost and even available from daily acoustic devices (e.g. buzzers, speakers, piezoelectric plates). The broad availability, with the addition of the advantages of acoustic micromanipulation, make sub-MHz microsystems promising for a variety of biomedical applications. Here, we review recent progresses in sub-MHz acoustic micromanipulation technologies, focusing on their applications in biomedical fields. These technologies are based on the basic acoustic phenomenon, such as cavitation, acoustic radiation force, and acoustic streaming. And categorized by their applications, we introduce these systems for mixing, pumping and droplet generation, separation and enrichment, patterning, rotation, propulsion and actuation. The diverse applications of these systems hold great promise for a wide range of enhancements in biomedicines and attract increasing interest for further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号