首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The rg structure of cyclopentene oxide has been determined by the simultaneous least squares analysis of electron diffraction and microwave spectroscopic data. The investigation has reaffirmed previous studies indicating that the molecule prefers a boat conformation. The methylene and epoxide flap angles obtained are 152.3±2.1° and 104.7±1.0° respectively. Other structural parameters determined are: rg (C-H avg.) = 1.120±0.004 Å; rg (C-C avg.) = 1.538±0.002 Å; rg (C-O) = 1.443±0.003 Å, and rg (C-C) = 1.482±0.004 Å for the carbon-carbon bond in the three membered epoxide ring. These results compare favorably with the reported structures of ethylene oxide and cyclohexene oxide. A tentative rationalization of the unusual boat conformation is also offered.  相似文献   

2.
By means of gas phase electron diffraction it has been shown that the five-membered ring in 1,3-dimethyl-2-chloro-diazaboracyclopentane is essentially planar, while there seems to be a slight deviation from planarity about the N atoms. The most important bond lengths (ra) and bond angles are (standard deviations in parentheses): r(B-N) = 1.413(3) Å; r(C-N)av = 1.455(2) Å; r(B-Cl) = 1.770(4) Å; ∠NBN = 110.8(3)°; ∠B2N3C4 = 108.6(3)°; ∠N3C4C5 = 105.7(3)°.  相似文献   

3.
The equilibrium structures and force fields of the twelve simplest silyl- and alkyl-pseudo halides are calculated by means of B3LYP and MP2(full) quantum-chemical methods with the use of the aug-cc-pVTZ basis. Some regularities in their structure are established. Using these data, the equilibrium structure of the (CH3)3SiNCSe molecule with symmetry C 3v is described experimentally for the first time via gas electron diffraction. The following values of the main r e parameters are determined (uncertainty 3σ is in parentheses): C=Se, 1.709(14) Å; N=C, 1.190(10) Å; N-Si, 1.767(15) Å; Si-C, 1.847(13) Å; N-Si-C, 106.4°; C-Si-C, 112.4°.  相似文献   

4.
The molecular structure of 1,1,2-trichloroethane has been determined by gas phase electron diffraction. The molecule is asymmetric. The geometrical parameters (ra structure) are: r(C-Cl) 1.776 Å; r(C-H) 0.98 Å; ∠(C-C-Cl) 107°; ∠(Cl-C-Cl) projected along the C-C bond 116°; dihedral angle (Cl-C-C-Cl) 75°. The parameters ∠(C-C-H) 102° and the projected (H-C-H) angle 136° are inaccurate. The structure is rather insensitive to the r(C-C) value, which is unusually long, 1.56 to 1.58 Å.  相似文献   

5.
The molecular structure of tetramethoxysilane was determined in the gas phase by electron diffraction. The molecule has S4 symmetry, slightly flattened along the axis. The SiO bonds are shorter than in methylsilylether, demonstrating the effect of electronegative substituents on the Si atom. The geometrical parameters (ra structure) are: Si-O bond 1.613 Å; C-O bond 1.414 Å; C-H bond 1.12 Å; O-Si-O angle bisected by S4 axis 115.5°; Si-O-C angle 122.3°; O-C-H angle 111°; methoxyl torsional angle 64°; methyl torsional angle 60°.  相似文献   

6.
The molecular geometry of the complex of aluminium trichloride with ammonia, Cl3Al.NH3, has been studied by electron diffraction. The most important internuclear distances in terms of ra parameters are as follows: r(Al-Cl) = 2.100±0.005 Å, r(Al-N) = 1.996±0.019 Å, r(Cl·Cl) = 3.569±0.011 Å and r(Cl·N) = 3.165±0.012 Å. The Cl-Al-Cl bond angle in terms of an approximate ra structure is 116.9°. The assumptions of a staggered model in the structure analysis was justified by CNDO/2 calculations. The experimental data indicate strong linkage between the donor and acceptor parts. The flat pyramidal average configuration of the AlCl3 part of the complex suggests planar equilibrium structure for free AlCl3. Variations in the bond configurations of the donor and acceptor parts, as compared with those of the respective free molecules, are discussed.  相似文献   

7.
The structures of propene and 3,3,3-trifluoropropene have been studied by electron diffraction intensities measured in the present study and rotational constants reported in the literature. The following average structures have been determined: For propene, rg(CC) = 1.342 ± 0.002 Å, rg(C-C) = 1.506 ± 0.003 Å, rg(C-H)vinyl = 1.104 ± 0.010 Å, rg(C-H)methyl = 1.117 ± 0.008 Å, ∠(C-CC) = 124.3 ± 0.4°, ∠(CC-H) = 121.3 ± 1.4°, and ∠(C-C-H) = 110.7 ± 0.9°; for trifluoropropene, rg(CC) = 1.318 ± 0.008 Å, rg(C-C) = 1.495 ± 0.006 Å, rg(C-H)= 1.100 ± 0.018 Å, rg(C-F) = 1.347 ± 0.003 Å, ∠(C-CC) = 125.8 + 1.1°, ∠(C-C-F) = 112.0 ± 0.2°, where the valence angles refer to the rav structure, and the uncertainties represent estimated limits of experimental error. A simple set of quadratic force constants for each molecule has been estimated. Regular trends have been observed in the CC and C-C bond distances and the C-CC angles in these and related molecules. Significant differences between the CC, C-C and C-F distances and the C-C-F angle in trifluoropropene and in hexafluoroisobutene reported by Hilderbrandt et al. have been indicated.  相似文献   

8.
The rg structure of bis(1,1,1,5,5,5-hexafluoroacetylacetonato) copper(II) has been determined by gas phase electron diffraction. The experimental data were found to be consistent with a D2h model in which the oxygens from the two ligands are arranged in an essentially square planar configuration about the copper atom (∠OCuO = 90.6° ± 1.2°). It was possible to obtain a precise value for the copper oxygen bond length, rg = 1.919 ± 0.008 Å, since this distance appeared as an isolated peak in the radial distribution curve. Structural parameters for the ligand (rg(C-O) = 1.276 ± 0.009 Å, rg(C-Cring) = 1.392 ± 0.015 Å, rg(C-CF3)= 1.558 ± 0.009 Å and rg(C-F) = 1.339 ± 0.003 Å), while less precisely determined are, nevertheless, consistent with reported values for related molecules. A model for the rotational isomerism of the four CF3 groups was invoked in order to explain various features in the radial distribution curve in a region from 2.5 to 5.5 Å.  相似文献   

9.
The microwave spectra of the halogeno-cyanoacetylenes, X-CC-CN (X = 127I, 81Br, 79Br, 37Cl, 35Cl), have been investigated. The molecules were found to be linear. The vibration-rotation constants of the three bending vibrations and the lower stretching vibration were determined. Lines belonging to the monosubstituted 13C and 15N species in their natural abundances were measured and the rotational constants obtained. The bond distances based on the substitution coordinates were: for I-CC-CN r(I-C) = 1.9846 Å, r(CC) = 1.207o Å, r(C-C) = 1.3702 Å, r(CN) = l.l604 Å; for Br-CC-CN, r(Br-C) = 1.7858 Å, r(CC) = 1.2041 Å, r(C-C) = 1.3699 Å, r(CN) = 1.1593 Å; and for C1-CC-CN, r(Cl-C) = 1.6245 Å, r(CC) = 1.209o Å, r(C-C) = 1.369o Å, r(CN) = 1.1602 Å.  相似文献   

10.
The molecular structure of 1,2-difluoroethane in the gas phase has been determined by electron diffraction at room temperature. Only the gauche conformation was found, the dihedral angle F-C-C-F is 74.5°. The bond lengths rg(1) are: r(C-C) = 1.535 Å, r(C-F) = 1.394 Å, r(C-H) = 1.13 Å. The valency angles are: α(C-C-F) = 108.3, α(C-C-H) = 108.3. The dihedral angle between the C-C-F and C-C-H planes is 113.6°.  相似文献   

11.
The structures of isobutene and 2,3-dimethyl-2-butene have been studied by gas electron diffraction. For isobutene the rotational constants obtained by Laurie by microwave spectroscopy have also been taken into account. Leastsquares analyses have given the following rg bond distances and valence angles (rav for isobutene and rα for dimethylbutene): for isobutene, r(CC) = 1.342±0.003 Å, r(C-C)= 1.508±0.002Å, r(C-H, methyl) = 1.119±0.007 Å, r(C-H, methylene) = 1.095±0.020 Å, ∠(C-CC) = 122.2±0.2°, ∠(H-C-H) = 107.9±0.8°, and ∠(C-C-H) 121.3±1.5°; for dimethylbutene, r(CC)= 1.353 ±0.004 Å, r(C-C) = 1.511±0.002 Å, r(C-H) = 1.118± 0.004 Å, ∠(C-CC)= 123.9±0.5°, and ∠(H-C-H)= 107.0±1.0°, where the uncertainties represent estimated limits of experimental error. The bond distances and valence angles in these molecules and in related molecules are compared with one another. The CC and C-C bond distances increase almost regularly with the number of methyl groups, and the C-C bonds in isobutene and dimethylbutene are shorter than those in acetaldehyde and acetone by about 0.01 Å. Systematic variations in the C-CC angles suggest the steric influence of methyl groups.  相似文献   

12.
The molecular structure of Cis- and trans-bicyclo[4.2.0]octane in the gas phase was studied. Molecular mechanics calculations applying Boyd's force Held were used for constraining differences between structural parameters during least squares analysis and for calculating vibrational amplitudes. The cyclohexane ring was found to have a distorted chair conformation, the ring in the cis isomer being flattened along the junction and more twisted in the other part. For the trans compound the reverse is true. The following structural parameters were obtained (ra-structure):cis: r(C-C)av. = 1.535 Å. Cyclohexane ring: average bond angle 112.9°; average torsional angle 48°. Cyclobutane ring: average bond angle 88.9°; puckering 157°. The dihedral angle between the bisecting planes of the C(2)-C(1)-C(6)-C(5) and C(8)-C(1)-C(6)-C(7) torsional angles, is 119° - the “connection angle” of the two rings.trans: r(C-C)av.= 1.532 Å. Cyclohexane ring: average bond angle 110.4° ; average torsional angle 57°. Cyclobutane ring: average bond angle 87.3°; puckering 145°. The “connection angle” is 180° (C2 symmetry).Comparison is made with structures of related compounds.  相似文献   

13.
The most important geometric parameters and associated uncertainties (2σ) determined for F2POPF2 are the distances (rg) P-O = 1.631 ± 0.010 Å, P-F = 1.568 ± 0.004 Å, and angles POP = 135.2 ± 1.8°, OPF = 97.6 ± 1.2°, and FPF = 99.2 ± 2.4°. Amplitudes of vibration were also found. The large POP angle and relatively short P-O bond length are consistent with a significant degree of pπ-dπ bonding. Our structure interpretation differs from an earlier one reported by Arnold and Rankin in the relative P-O and P-F bond lengths and in the conclusion that the molecule exists in a distribution of not very rigid, probably staggered, conformers instead of one fairly rigid structure.  相似文献   

14.
Molecular structure of WO2Br2 has been studied by electron diffractometry. Structural parameters for the molecule with C2v symmetry are: rα(W=O)=1.710(6) Å, rα(W?Br)=2.398(5) Å, rα(O?O)=2.815(30) Å, rα(Br?Br)=4.021(16) Å, rα(O?Br)=3.347(10) Å. The OWO and BrWBr bond angles are close to tetrahedral:L αOWO=110.8(2.0)°, LαBrWBr=113.9(1.0)°. The W=O bond was found to be characteristic in the series of tungsten dioxyhalides.  相似文献   

15.
The molecular structure of carbonyl fluoride has been determined by electron diffraction. The results have been used in conjunction with the rotational constants reported by Carpenter in a combined structure analysis. The values so obtained are rz (C=O) = 1.1717 ± 0.0013 Å, rz (C-F) = 1.3157 ± 0.0005 Å, and ∠zF-C-F = 107.71 ± 0.08°. These agree with the corresponding parameters estimated by Carpenter from the rotational constants alone. The effective constants, α3, representing the cubic anharmonicity of bond stretching vibrations have been estimated.  相似文献   

16.
Microwave spectra of CH18 OCOOH, CHOC18 OOH, CHOCO18 OH, 13 CHOCOOH and CHO13 COOH are reported and have been used in combination with data on CHOCOOH and CHOCOOD to determine the molecular structure as r(C=O)ald. = 1.174 ± 0.006 Å, r(C=O)acid = 1.203 ±0.006 Å, r(C—O) = 1.313 ± 0.010 Å, r(C—C) = 1.535 ± 0.005 Å, r(O—H) = 0.948 ± 0.004 Å, r(C—H) = 1.104 ±0.010 Å, ald. = 123.7 ± 0.4<, 相似文献   

17.
Trivinylborane has been studied by standard electron-diffraction techniques. The best agreement with experiment is obtained with a planar dynamic model in which steric strain within the molecule is reduced by distortion of the vinyl groups, and shrinkages simulate considerable torsional motion about the B-C bonds. The following parameters (ra basis) and e.s.d. were obtained: C-H = 1.092± 0.003 Å; C-C = 1.370 ± 0.006 Å; B-C = 1.558± 0.003 Å; ∠BCH = 116.5 ± 0.9 °; ∠BCC = 122.4 ± 0.9°; ∠CCH (trans to B) = 124.0 ± 1.6°; ∠CCH (cis to B) = 132.2 ± 2.3°. A static non-planar model has also been considered.The probable planarity of the molecule and the length of the C C bond are interpreted as evidence for π-electron delocalisation from carbon to boron.  相似文献   

18.
A combined electron diffraction and mass spectrometric study was carried out to investigate the molecular structure of 4-methylbenzene sulfochloride at 330(2) K. An analysis of the electron diffraction data was performed in terms of the rα structure. Several models of geometrical structure having different orientations of the sulfochloride group relative to the plane of the benzene ring are treated. The following values of structural parameters were obtained: rα(C-H)meth= 1.104(41)Å, ra(C-H)/phen = 1.103(27)Å, ra(C-C)phen = 1.403(7) Å, ra(C-C)meth = 1.512(25) Å, ra(C-S) =1.758(6) Å, ra(S = O) = 1.419(3) Å,r a(S-Cl) = 2.049(5) Å, ∠CCHmeth = 106.9(47)?, ∠CSO = 110.5(6)?, ∠CSCl = 101.3(6)°, ∠OSO = 120.5(9)°. The angle between the plane of the benzene ring and the plane of the S-Cl bond was found to be 83°. Ab initio and semiempirical quantum chemical calculations were accomplished to estimate the geometrical and energy parameters and compare them with electron diffraction data.  相似文献   

19.
In a mass spectrometric study, it was found that the saturated vapor over gadolinium tris-hexafluoroacetylacetonate Gd(C5O2HF6)3 contains molecular forms with a mass exceeding the mass of the dimer. The vapor overheated to 250–300°C contains only the monomer form. Simultaneous electron diffraction and mass spectrometric experiment aimed at investigating the structure of the Gd(hfa)3 monomer molecule was carried out at 284(5)°C. The Gd(hfa)3 molecule was found to have the symmetry of the equilibrium D 3 configuration. The basic structural parameters are r h1(Gd-O) = 2.291(10) Å, r h1(O-C) = 1.257(10) Å, r h1(C-Cr) = 1.404(6) Å, r h1(CF-F)av = 1.341(3) Å, ∠OGdO = 72.8(0.4)°. The GdO6 coordination polyhedron has the structure of a distorted antiprism. The rotation angle of the O-O-O trigonal faces relative to their position in a regular prism is 18.7(0.9)°. Quantum chemical calculations (HF/SBK, 6-31G*) generally reproduce the experimental structure, but the Gd-O internuclear distance is exaggerated by 0.04 Å.  相似文献   

20.
The molecular structure of COBr2 has been determined as follows by an analysis of electron diffraction intensity: rg(CO) = 1.178 ± 0.009 Å, rg(C-Br) = 1.923 ± 0.005 Å and θ°α(Br-C-Br) = 112.3 ± 0.4°. The uncertainties represent estimated limits of error. The observed systematic trends in the bond lengths and bond angles in carbonyl and thiocarbonyl halides are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号