首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expressions are derived for the S*2 and S*1 fluorescence quantum yields and response functions of isolated excited aromatic molecules in the statistical limit. The S*2 and S*1 fluorescences have a common decay time, a property previously considered characteristic of intermediate strong coupling. Data on pyrene, naphthalene, and 3:4-benzopyrene vapours are discussed in relation to the two models.  相似文献   

2.
A diethylpyrrole‐bridged dizinc(II) bisporphyrin (Zn2DEP) is reported that encapsulates fluorescent probe pyrene molecules through strong π–π interactions, which can relay information about the chemical environment in the interior of the host–guest supramolecular assembly. X‐ray structures of both Zn2DEP and the encapsulated pyrene complex are reported, which provides a rare opportunity to investigate the structural changes upon guest binding. A comparative structural analysis demonstrated the exceptional ability of this bisporphyrin platform to open its binding pocket for pyrene encapsulation by a vertical displacement of more than 2.45 Å, although both Zn2DEP and the pyrene complex have nearly parallel porphyrin ring orientations. The 1H NMR spectrum of the encapsulated pyrene complex in solution shows the upfield shifts of the pyrene protons due to a strong ring current effect, which demonstrates the retention of the solid‐state structure in solution. To further assess the extent to which pyrene guests remain encapsulated in solution, a known fluorescence quencher, dimethylaniline, was added to the host–guest assembly, which shows no exciplex formation for days in nonpolar solvents. Thus, the assembly also retained the structural integrity in solution for a long time. The association constant (Kasso) for such a complexation process in solution was observed to be 1.78×105 M ?2 for 1:2 binding. Steady‐state fluorescence and lifetime studies indicate significant photoinduced singlet–singlet energy transformation from the excited state of pyrene to zinc bisporphyrin.  相似文献   

3.
Abstract

The energy of the first excited singlet state S1 of S8 is estimated as 89 ± 3 kcal · mole?1. S8 does not exhibit fluorescence, but quenches the fluorescence of certain sensitizers (benzene, naphthalene, pyrene) acting as an energy acceptor in the energy transfer process from the S1 state of the sensitizer. The process of the quenching of donor fluorescence by S8 was analysed using the Stern–Volmer equation.  相似文献   

4.
Using the single-photon time correlation method, we have determined the lifetime of the S2(B3Σ?u) state from the decay rate of the fluorescence at 370 nm. A lifetime of 45.0 ± 0.6 ns was measured, and the cross section for fluorescence quenching by S2 as found to be 81.3 ± 4.7 A2. A slight dependence of the lifetime on the wavelength of the excitation source over the range of 280 to 337 nm was observed.  相似文献   

5.
The decay of prompt fluorescence in crystalline naphthalene at 300 K, excited by a picosecond 266 nm pulse, has been studied as a function of excitation intensity. Experimental decay curves can be fitted only when the exponential distribution in depth of excitation and the radial (gaussian) intensity profile of the excitation are both taken into account. From an analysis of the decay at early time (?5 ns) a best fit value of the singlet—singlet annihilation rate constant is found γSS = (4 ± 1) × 10?10 cm3 s?1. If the reaction is diffusion-limited, this rate implies an average singlet diffusivity DS = (2 ± 1) × 10?4 cm2 s?1.  相似文献   

6.
Millisecond time-resolved emission spectroscopy was used to probe the phosphorescence kinetics of the α-β-enone 6β, 19-epoxycholest-4-en-3-one (1) as a function of concentration in several paraffinic and hydroxylic glasses at 77 K. Only in methylcyclohexane/methylcyclopentane glass at low concentration (10?4M) does the phosphorescence decay exponentially. It is interpreted as emission from the 3n* state. Upon increasing the concentration a second emission grows which is characterized by a longer lifetime, a decreased fine structure and a hypsochromically shifted S01nπ* excitation spectrum. This phosphorescence is ascribed to 3ππ* emission of aggregates of 1. In hydroxylic glasses the phosphorescence decay is multiexponential, even at 10?4M concentration; from emission band shapes and lifetimes it follows that both 3nπ* and 3ππ* type emissions are present, the latter increasing with the alcohol concentration in the solvent. The two types of phosphorescence have different excitation spectra: that of the structureless and long-lived 3ππ* emission is shifted to the blue in the S01nπ* region and to the red in the S01ππ* region. This emission is ascribed to complexes of 1 with the alcoholic solvent. The results of time-resolved measurements of the circular polarization of the luminescence are consistent with the assignments given above and indicate that in the H-bonded and possibly also in the free species 3ππ* and 3nπ* states are intermixed to a considerable extent.  相似文献   

7.
A computer simulation procedure has been applied to the fluorescence decay curves of pyrene vapour, excited into the S1 state with short laser pulses. The results confirm that the kinetic model which has been used previously in order to describe the effect of vibrational redistribution on the fluorescence decay, is consistent with the experimental decay curves. A very short decay component (τ ≈ 4 nsec) which appears when the energy of the laser exceeds 1.5 mJ is ascribed to doubly excited pyrene molecules.  相似文献   

8.
Two anomalous emission bands in the fluorescence spectrum of 3,4-benzpyrene, dissolved in 2-methylpentane, have been studied as a function of temperature. These emissions originate from the second excited singlet state S2, and from a vibrationally excited S1 (S*1) respectively. From the temperature dependence of the relative yield and the decay time of the S*1 emission it can be concluded that the vibrational relaxation of this state is hampered. The rate constant for this relaxation process is smaller that 4 > 62;x 107 sec?1.  相似文献   

9.
Relative quantum yields and time constants for the fluorescence from pyrene (S1) stimulated by UV light have been measured for dispersions of the aromatic in several liquid solvents and aqueous surfactant micelles. Values of the relative radiative decay parameter, kF, were extracted and its medium dependence tabulated. This parameter was found to vary with medium polarity, being higher in more polar media. This effect, characterized for homogeneous liquid phases, was used to demonstrate that pyrene in surfactant micelles is strongly affected by the polar influences of water molecules which deeply penetrate the micelle in the region of the probe.  相似文献   

10.
Amphiphilic polymers were prepared by the copolymerization of 2-acrylamido-2-methylpropanesulfonic acid (AMPS) and aromatic vinyl compounds such as 9-vinylphenanthrene (VPh) and 1-vinylpyrene (VPy) with the expectation that they would serve as potential media for photosensitized electron transfer reactions. AMPS strongly solubilizes the hydrophobic segments into water; i.e., poly(AMPS-co-VPh) with VPh mole fraction (fPh) up to about 0.60 and poly(AMPS-co-VPy) with VPy mole fraction (fPy) up to about 0.35 were found to be soluble in water. Poly(AMPS-co-VPh) in aqueous solution, as compared with that in DMF solution, showed a broad fluorescence spectrum with significant tailing in the longer-wavelength region along with a decrease in the intensity of the structured, monomer fluorescence band. These phenomena seem to imply the presence of an excimerlike interaction of phenanthryl groups in an aqueous solution through which the fluorescence from excited VPh units may be partly self-quenched. A considerable enhancement of the fluorescence from sodium 8-anilino-1-naphthalenesulfonate (ANS) caused by hydrophobic interaction of the probe with poly(AMPS-co-VPh) in aqueous solution indicated that these copolymers assume micellar structures. The fluorescence of these copolymers in aqueous solutions was quenched by bis(2-hydroxyethyl)terephthalate (BHET), an amphiphilic quencher, far more effectively than by fumaric acid, a hydrophilic quencher. This tendency is particularly strong for the copolymers with higher content of hydrophobic units. The second-order rate constants for the quenching of poly(AMPS-co-VPh) (fPh = 0.58) by BHET were found to be ca. 3 × 1010 and 1.5 × 109 M?1 s?1 in aqueous and in DMF solution, respectively. The larger value in an aqueous solution is presumably due to an increase of the effective concentration of the amphiphilic quencher around the VPh sequences of the copolymer resulting from hydrophobic interaction.  相似文献   

11.
The photophysics and polarization of the phosphorescence and delayed fluorescence of erythrosin in conditions compatible with the current biological applications of the dye (aqueous buffers at pH 7.4 at ambient temperatures) and in ethanol have been studied as a function of dye concentration (10 ?7-10?5M) and temperature (245–333K). The emission decay is strictly single exponential and the detailed kinetic analysis of all the rate processes connected with the emitting T1 state showed that (1) the lowering of the emission lifetime at the higher temperatures is due to a very efficient self-quenching process, (2) the back intersystem crossing rate Tx S1 is temperature dependent (δETS7 kcal mol?1) but the T1S0 is not (Ea0.1 kcal mol?1) and (3) both intersystem crossing processes are very sensitive to solvent polarity, which accounts for the solvent dependence of the phosphorescence yield and lifetime. The high value of the phosphorescence anisotropy (r0= 0.25 lt 0.006) is independent of the excitation and emission wavelengths, and its evolution in time accurately reflects the rotational restrictions in solid solutions. The relevance of these findings to studies with protein-dye conjugates is also outlined to facilitate the design and interpretation of phosphorescence depolarization experiments that probe the (μs-ms dynamics of biomolecules and supramolecular systems.  相似文献   

12.
Quenching of dual fluorescence emissions (S1 - and S2-fluorescence) of pyrene-h10 and pyrene-d10 by oxygen or nitric oxide in the vapor phase at 170°C has been investigated over a wide range of the quencher pressure up to 1000 torr. In addition to slow emission, the S2-fluorescence contains a small amount of fast emission which is not quenched even at the highest pressure of quenching gas. From the change of the ratio between the S1 - and S2-fluorescence quantum yields with the pressure of the quenching gas, the rate constant of the forward internal conversion S2
S1 is found to be ≈ 3 × 1013 s?1 regardless of excitation energy, while that of the reverse internal conversion S2
S1 is found to change from 1 × 109 to 3 × 1010 s?1 on increasing the excitation energy from 33.6 × 103 to 42.7 × 103 cm?1. The quantum yield of the fast S2-fluorescence is evaluated to be about 5 × 10?6 irrespective of excitation energy.  相似文献   

13.
Aggregation properties of hydrophobized hyaluronan with different molecular weights and degrees of substitution were studied using pyrene and perylene as fluorescence probes. Both probes in contrast to native biopolymer confirmed aggregation of modified hyaluronan. The critical aggregation concentration (cac) was determined by the pyrene I1/I3 and perylene fluorescence intensity method. The cac value varied both with the molecular weight and the degree of substitution and was between 0.610 and 0.003 g·L?1. Pyrene polarity scale confirmed formation of hydrophobic domains.  相似文献   

14.
The fluorescence emission spectrum and analysis of NSF vapor is presented. Single vibronic level excitation near the S1 origin gives rise to a 10 μs radiative decay. The fluorescence lifetime for excitation of levels with ? 4500 cm?1 excess vibrational energy becomes controlled by a unimolecular radiationless process which is likely photodissociation; the dependence of this radiationless rate on energy and vibrational mode is investigated. The perturbations resulting from coupling of zero-order S1 states with other vibronic levels which control the excited state dynamics of SO2 are apparently not operative for NSF. Attempts are made to rationalize the grossly different dynamic behavior of the S1 levels of these two otherwise very similar systems.  相似文献   

15.
Gas-phase azulene molecules were prepared with 17200 cm?1 vibrational energy in the S0 state by laser excitation of the S1 state and subsequent internal conversion. Rates of vibrational energy removal (for several collision partners) were determined from the decay of the CH-stretch fluorescence at 3.3 μm. A stepladder model indicates each azulene-azulene collision removes 3500 cm?1 of vibrational energy.  相似文献   

16.
In this paper we present the results of an experimental study of intermolecular electronic energy transfer (EET) from the short-lived Second excited singlet state of rhodamine 6G (R6G) to the ground state of 2,5-bis [5′-tert-butyl-2-benzoxazolyl] thiophene (BBOT). The S2 state of the donor was excited by sequential, time-delayed, two-photon excitation (STDTPE) utilizing the second harmonic and the first harmonic of a mode-locked Nd3+: glass laser, while the EET process was interrogated by monitoring the enhancement of the S1 → S0 fluorescence of BBOT. The enhancement of the fluorescence intensity of BBOT was found to be linear in the energies of the two exciting pulses, and linear in the concentration of the energy acceptor (over the BBOT concentration range of (0.3–7) × 10?5 M), which is in accord with the predictions of the Forster—Dexter mechanism for resonant EET from an ultrashort-lived donor state at low acceptor concentrations. Quantitative measurements of the S2 → S0 fluorescence yield in R6G solution directly excited by STDTPE and of the S1 → S0 fluorescence of BBOT from R6G + BBOT solutions resulting from EET led to the values of YD(S2 → S0) = (2.1 ± 0.5) × 10?6 for the emission quantum yield of the S2 state of R6G and τrD(S2) ≈ 3 × 10?14 s for the lifetime of the metastable S2 state of this molecule.  相似文献   

17.
The quenching of pyrene fluorescence by nitromethane, Tl+, Cu2+, I?, and 4-dimethylaminopyridine (DMAP) in aqueous solutions of a pyrene substituted poly(acrylic acid) ( 1 ) was influenced by the “polyelectrolyte effect” of 1 . The efficiency of quenching in solutions of 1 was measured in terms of the Stern–Volmer constants for dynamic and static quenching which were obtained from comparison of the intensity and lifetime of pyrene fluorescence in solutions of 1 and a monomer model compound. The efficiency of quenching in solutions of 1 was always greater at high pH ( 9 ) in comparison to that at low pH ( 4 ). The ionization of carboxylic groups in 1 caused an expansion of the polymer mainchain and concomitant exposure of the pyrene molecules to the aqueous phase and quencher. The polyanion domain of 1 favored the condensation of cationic quenchers and could account for very efficient quenching in case of Cu2+ and Tl+. A very efficient quenching of pyrene fluorescence in solutions of 1 by DMAP at high pH was attributed to the hydrophobic interactions of DMAP and pyrene moiety. The iodide ions were less efficient quenchers of pyrene fluorescence due to electrostatic repulsion from the polyanion. The efficiency of quenching by nitromethane was not significantly affected by ionization of the carboxylic groups in 1 .  相似文献   

18.
The influence of excitation conditions, temperature, and fluorescence quencher on the properties of 3-hydoxyflavone excited states is considered. Two-band fluorescence spectra of 3-hydroxyflavone formed in excitation by electromagnetic radiation in the region of the S 1 and S 2 absorption bands over the temperature range 20–80°C were recorded and analyzed. The TEMPO spin quencher was used as an excited state quencher. An analysis of the fluorescence parameters showed that solution heating from room temperature to 60°C increased the rate of proton transfer by 1.24 times at standard excitation into the main absorption band. The rate increased still more rapidly (by 6.9 times) in excitation into the second absorption band. The presence of the quencher caused a decrease in the yields of both fluorescence bands according to the diffusion mechanism and a noticeable growth in the rate of proton transfer. The latter increased by 1.16 times at room temperature and by 1.25 times at 80°C. The corresponding changes were more substantial, especially at elevated temperatures, if the second singlet band was excited. They then amounted to 1.24 and 3.5 times over the same temperature range.  相似文献   

19.
Hydrophilic ionic polyurethanes with 4‐chloromethylphenylcarbamoyl‐1‐oxymethylpyrene located on the quaternary ammonium structure from a polymer based on poly(ethylene glycol), isophorone diisocyanate, and N‐methyldiethanolamine were prepared by a quaternization reaction, in which the amount of pyrene covalently attached to the polymeric backbone ranged from 1.14 to 19.82 mmol of fluorophore/100 g of polymer. It was interesting to compare the photoluminescence of the pyrene polyurethane carrying a few mole percent of pyrene moieties with that of a third polymer resulting from its subsequent quaternization with benzyl chloride up to a concentration of ionic groups as in the latter (quaternization degree = 14.15%). The process of excimer formation between the pyrene molecules attached to the ionic polyurethane was investigated in tetrahydrofuran (THF), dimethylformamide, film, and THF/H2O to illustrate the expected differences in the polymer behavior compared with that of the starting pyrene derivative. The formation of aggregates or core–shell micelles was sustained by the fluorescence data, which indicated the existence of pyrene units in the ground state of the molecule, giving rise thus to an explanation for the high excimer‐to‐monomer intensity ratio. The fluorescence decay of pyrene polyurethanes in the presence of various concentrations of nitrobenzene used as a quencher was analyzed too when the fluorescence quenching in the polymer solution normally followed Stern–Volmer kinetics. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3945–3956, 2005  相似文献   

20.
《Chemical physics letters》1986,126(6):487-494
Some universal characteristics are discussed of the decay lifetimes and fluorescence quantum yields from the S1 manifold of large molecules, which originate from the coupling between intrastate vibrational energy redistribution and interstate electronic relaxation. The time-resolved total fluorescence decay from the S1 state of jet-cooled 9-cyanoanthracene exhibits non-exponential decay in the energy range Ev= 1200–1740 cm−1 above the S1 origin, which does not originate from dephasing but rather manifests the effects of intrastate intermediate level structure for vibrational energy redistribution on intersystem crossing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号