首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal and catalytic degradation of pyrolytic oil obtained from the commercial rotary kiln pyrolysis plant for municipal plastic waste was studied by using fluid catalytic cracking (FCC) catalyst in a bench scale reactor. The characteristics of raw pyrolytic oil and also thermal and catalytic degradation of pyrolytic oil using FCC catalyst (fresh and spent FCC catalyst) under rising temperature programming was examined. The experiments were conducted by temperature programming with 10 °C/min of heating rate up to 420 °C and then holding time of 5 h. During this programming, the sampling of product oil was conducted at a different degradation temperature and also different holding time. The raw pyrolytic oil showed a wide retention time distribution in GC analysis, from 5 of carbon number to about 25, and also different product characteristics with a comparison of those of commercial oils (gasoline, kerosene and diesel). In thermal degradation, the characteristics of product oils obtained were influenced by reaction temperature under temperature programming and holding time in the reactor at 420 °C. The addition of FCC catalyst in degradation process showed the improvement of liquid and gas yield, and also high fraction of heavy hydrocarbons in oil product due to more cracking of residue. Moreover, the characteristic of oil product in catalytic degradation using both spent and fresh FCC catalysts were similar, but a relatively good effect of spent FCC catalyst was observed.  相似文献   

2.
A study of the possibilities of pyrolysis for recovering wastes of the rope's industry has been carried out. The pyrolysis of this lignocellulosic residue started at 250 °C, with the main region of decomposition occurring at temperatures between 300 and 350 °C. As the reaction temperature increased, the yields of pyrolyzed gas and oil increased, yielding 22 wt.% of a carbonaceous residue, 50 wt.% tars and a gas fraction at 800 °C. The chemical composition and textural characterization of the chars obtained at various temperatures confirmed that even if most decomposition occurs at 400 °C, there are some pyrolytic reactions still going on above 550 °C. The different pyrolysis fractions were analyzed by GC–MS; the produced oil was rich in hydrocarbons and alcohols. On the other hand, the gas fraction is mainly composed of CO2, CO and CH4. Finally, the carbonaceous solid residue (char) displayed porous features, with a more developed porous structure as the pyrolysis temperature increased.  相似文献   

3.
Thermal behavior of textile waste was studied by thermogravimetry at different heating rates and also by semi-batch pyrolysis. It was shown that the onset temperature of mass loss is within 104–156 °C and the final reaction temperature is within 423–500 °C. The average mass loss is 89.5%. There are three DTG peaks located at the temperature ranges of 135–309, 276–394 and 374–500 °C, respectively. The first two might be associated with either with decomposition of the hemicellulose and cellulose or with different processes of cellulose decomposition. The third peak is possibly associated to a synthetic polymer. At a temperature of 460 °C, the expected amount of volatiles of this waste is within 85–89%. The kinetic parameters of the individual degradation processes were determined by using a parallel model. Their dependence on the heating rate was also established. The pyrolysis rate is considered as the sum of the three reaction rates. The pyrolysis in a batch reactor at 700 °C and nitrogen flow of 60 ml/min produces 72 wt.% of oil, 13.5 wt.% of gas and 12.5 wt.% of char. The kinetic parameters of the first peak do not vary with heating rate, while those of the second and the third peak increase and decrease, respectively, with an increasing heating rate, proving the existence of complex reaction mechanisms for both cases.  相似文献   

4.
Water-insoluble pyrolytic cellulose with similar appearance to pyrolytic lignin was found in cellulose fast pyrolysis oil. The influence of pyrolysis temperature on pyrolytic cellulose was studied in a temperature range of 300–600 °C. The yield of the pyrolytic cellulose increased with temperature rising. The pyrolytic cellulose was characterized by various methods. The molecular weight distribution of pyrolytic cellulose was analyzed by gel permeation chromatography (GPC). Four molecular weight ranges were observed, and the Mw of the pyrolytic cellulose varied from 3.4 × 103 to 1.93 × 105 g/mol. According to the elemental analysis (EA), the pyrolytic cellulose possessed higher carbon content and lower oxygen content than cellulose. Thermogravimetric analysis (TGA) indicated that the pyrolytic cellulose underwent thermo-degradation at 127–800 °C and three mass loss peaks were observed. Detected by the pyrolysis gas chromatography–mass spectrometry (Py-GC/MS), the main pyrolysis products of the pyrolytic cellulose included saccharides, ketones, acids, furans and others. Fourier transforms infrared spectroscopy (FTIR) also demonstrated that the pyrolytic cellulose had peaks assigned to CO stretching and glycosidic bond, which agreed well with the Py-GC/MS results. The pyrolytic cellulose could be a mixture of saccharides, ketones, and their derivatives.  相似文献   

5.
Cellulose and cellulose/montmorillonite K10 mixtures of different ratio (9:1, 3:1, 1:1) were subjected to pyrolysis at temperatures from 350 to 500 °C with different heating rate (10 °C/min, 100 °C/s) to produce bio-oil and selected chemicals with high yield. The pyrolytic oil yield was in the range of 46–73.5 wt% depending on the temperature, the heating rate and the amount of catalyst. The non-catalytic fast pyrolysis at 500 °C gives the highest yield of bio-oil (84 wt%). The blending cellulose with increasing amount of montmorillonite K10 results in significant, linear decrease in bio-oil yield. The great influence of montmorillonite K10 amount on the distribution of bio-oil components was observed at 450 °C with a heating rate of 100 °C/s. The addition of catalyst to cellulose promotes the formation of 2-furfural (FF), various furan derivatives, levoglucosenone (LGO) and (1R,5S)-1-hydroxy-3,6-dioxabicyclo-[3.2.1]octan-2-one (LAC). Simultaneously, the share of levoglucosan (LG) in bio-oil decreases from 6.92 wt% and is less than 1 wt% when cellulose:MK10 (1:1, w/w) mixture at 450 °C is rapidly pyrolyzed. Additionally, several other compounds have been identified but in minor quantities. Their contributions in bio-oil also depend on the amount of catalyst.  相似文献   

6.
The pyrolysis of cycloolefin-copolymers (COC) in a fluidized-bed reactor was studied under various parameters like pyrolysis temperature, fluidizing gas or residence time. It was proven to reduce the undesired tar fraction to a minimum of around 10 wt.% and to obtain up to 44 wt.% valuable gases and 45 wt.% aromatic light oils with a reactor temperature of 700 °C.Furthermore, the mechanism of the pyrolytic degradation has been analyzed to determine if the comonomer 2-norbornene can be obtained by pyrolysis. In all experiments, only traces of around 0.05 wt.% were detected. It was learned that 2-norbornene is not stable enough to resist drastic pyrolysis conditions; rather it undergoes a Retro–Diels–Alder reaction to form ethene and cyclopentadiene.  相似文献   

7.
《Comptes Rendus Chimie》2014,17(7-8):672-680
Experimental studies on diesel soot oxidation under a wide range of conditions relevant for modern diesel engine exhaust and continuously regenerating particle trap were performed. Hence, reactivity tests were carried out in a fixed bed reactor for various temperatures and different concentrations of oxygen, NO2 and water (300–600 °C, 0–10% O2, 0–600 ppm NO2, 0–10% H2O). The soot oxidation rate was determined by measuring the concentration of CO and CO2 product gases. The parametric study shows that the overall oxidation process can be described by three parallel reactions: a direct C–NO2 reaction, a direct C–O2 reaction and a cooperative C–NO2–O2 reaction. C–NO2 and C–NO2–O2 are the main reactions for soot oxidation between 300 and 450 °C. Water vapour acts as a catalyst on the direct C–NO2 reaction. This catalytic effect decreases with the increase of temperature until 450 °C. Above 450 °C, the direct C–O2 reaction contributes to the global soot oxidation rate. Water vapour has also a catalytic effect on the direct C–O2 reaction between 450 °C and 600 °C. Above 600 °C, the direct C–O2 reaction is the only main reaction for soot oxidation. Taking into account the established reaction mechanism, a one-dimensional model of soot oxidation was proposed. The roles of NO2, O2 and H2O were considered and the kinetic constants were obtained. The suggested kinetic model may be useful for simulating the behaviour of a diesel particulate filter system during the regeneration process.  相似文献   

8.
The steam cracking (copyrolysis) of naphtha with oils/waxes from thermal decomposition of polyalkenes has been investigated as a process for chemical recycling of plastic wastes. High-density polyethylene (HDPE), two-component mixture (LDPE/PP) and three-component mixture (HDPE/LDPE/PP) were thermally decomposed in a batch reactor at 450 °C, thus forming oil/wax products. Subsequently, these products were dissolved in heavy naphtha in the amount of 10 mass% to obtain steam cracking feedstock. The composition of gaseous and liquid products during copyrolysis was studied at 780 °C and 820 °C in dependence on residence time from 0.08 s to 0.51 s. The obtained results were compared with the product composition from steam cracking of naphtha at identical experimental conditions. The decomposition of polyalkene oils/waxes during copyrolysis was confirmed on the basis of analysis of liquid products. It was shown that more ethene and propene was formed during copyrolysis of oil/wax from HDPE in comparison with naphtha and both mixtures and so oil/wax from HDPE seems to be favourable component of steam cracking feedstock. There were slight differences between product compositions from copyrolysis of two- and three-component mixtures. The presence of HDPE in three-component mixture supported formation of gas and ethene. The presence of oil/wax form PP enhanced formation of propene and branched alkenes. For both type of polyalkenic mixtures the yields of desired low molecular alkenes and alkanes were higher or approximately the same as from naphtha. The results confirm suitability of oils/waxes from polyalkenes as a co-feed for steam cracking units.  相似文献   

9.
Batch-mode pyrolysis of 200.0 g samples of polymers was studied at low temperature. The cracking reaction was carried out in a stainless-steel autoclave with reaction temperatures of 360, 380, 400 and 420 °C, initial pressure of 6.325 kPa (absolute pressure) and reaction times of 0–240 min. Based on the experimental results, a four-lump kinetic model has been developed to describe the production distribution of the light fractions, middle distillates and heavy fraction. This model reasonably fitted the results in each reaction of operation conditions. It was also found that the pyrolysis kinetics of separated plastic, mixed plastic and mixed plastic containing additives can be described by the same kinetic model. The plastic additives have not had a great influence on the product distribution and kinetics of the mixed plastic pyrolysis. Finally, the optimum conditions of low-temperature conversion of plastic mixtures to value-added products were established. The formation of heavy fractions from HDPE was as high as 70 wt% at 380 °C at a reaction time of 250 min. During the thermal degradation of plastic mixtures, the heavy fractions yielded up 50 wt% for 30 min reaction time at 400 °C. The total activation energies for the conversion of HDPE and the plastic mixtures were estimated to be 217.66 kJ mol−1 and 178.49 kJ mol−1, respectively.  相似文献   

10.
The cellulose without and with catalyst (CuCl2, AlCl3) was subjected to pyrolysis at temperatures from 350 to 500 °C with different heating rate (10 °C/min, 100 °C/s) to produce bio-oil and selected chemicals with high yield. The pyrolytic oil yield was in the range of 37–84 wt% depending on the temperature, the heating rate and the amount of metal chloride. The non-catalytic fast pyrolysis at 500 °C gives the highest yield of bio-oil. The mixing cellulose with both metal chlorides results with a significant decrease of the liquid product. The non-catalytic pyrolysis of cellulose gives the highest mass yield of levoglucosan (up to 11.69 wt%). The great influence of metal chloride amount on the distribution of bio-oil components was observed. The copper(II) chloride and aluminum chloride addition to cellulose clearly promotes the formation of levoglucosenone (up to 3.61 wt%), 1,4:3,6-dianhydro-α-d-glucopyranose (up to 3.37 wt%) and unidentified dianhydrosugar (MW = 144; up to 1.64 wt%). Additionally, several other compounds have been identified but in minor quantities. Based on the results of the GC–MS, the effect of pyrolysis process conditions on the productivity of selected chemicals was discussed. These results allowed to create a general model of reactions during the catalytic pyrolysis of cellulose in the presence of copper(II) chloride and aluminum chloride.  相似文献   

11.
The electrochemical measurements were carried out by using thermophilic cytochrome P450 CYP119A2 (P450st) modified with poly(ethylene oxide) (PEO) in PEO200 as an electrochemical solvent. The PEO modified P450st gave clear reduction–oxidation peaks by cyclic voltammetry in oxygen-free PEO200 up to 120 °C. The midpoint potential measured for the P450st was −120 mV vs. [Fe(CN)6]4−/[Fe(CN)6]3− at 120 °C. The peak separation, ΔE, was 16 mV at 100 mV/s. The estimated electron transfer rate of PEO-P450st at 120 °C was 35.1 s−1. The faster electron transfer reaction was achieved at higher temperatures. The electrochemical reduction of dioxygen was observed at 115 °C with the PEO-modified P450st system.  相似文献   

12.
《Thermochimica Acta》2003,396(1-2):153-166
Results of spectrophotometric and thermogravimetric studies of chitosan (CH) blends with polyvinyl alcohol (PVAL), starch (S) and hydroxypropylcellulose (HPC) obtained by casting from solutions in the form of transparent films containing 0–1.0 weight fraction of CH were discussed. Blends containing S are homogeneous only in the case of low-weight fraction of S (to 0.3).On the basis of results of thermodegradation in dynamic and isothermal conditions, thermal stability of the tested systems was estimated. Thermogravimetric measurements in dynamic conditions were carried out in the temperature range of 100–450 °C at constant heating rate 15 °C/min. From thermogravimetry (TG) and DTG curves the activation energy and characteristic parameters of degradation of the tested blends were determined. The observed growth of activation energy and Tp—temperature of initial weight loss, Tmax—temperature of maximal rate and Ce—degree of conversion at the end of the measurement (at temperature 450 °C) along with the increase of polymer fraction (HPC and S) in the CH blend provides an evidence of improved thermal stability of the systems tested.Investigations in isothermal conditions in air at temperature from 100 to 200 °C confirmed appreciable improvement of CH thermal stability in the blends being tested.Infrared spectroscopic analysis of the blends showed a distinct stabilization of the process of chain scission. In the band at 1080 cm−1 associated with absorption in –C–O–C– group during degradation of the blends at temperature 200 °C much smaller decrease due to molecular scission were observed than in the case of pure CH.  相似文献   

13.
In this paper, thermogravimetry, TG, and pyrolysis are used for the thermochemical evaluation of the common reed (Pragmites australis) as a candidate biomass feedstock. The TG analysis indicated that the material loses 4% of its weight below 150 °C through dehydration. The main decomposition reaction occurs between 200 and 390 °C. The rate of weight loss, represented by the derivative thermogravimetric, DTG, signal indicated a multi-step reaction. Kinetic analysis helped in the resolution of the temperature ranges of the overlapping steps. The first step corresponds to the degradation of the hemi-cellulosic fraction and the second to the cellulosic fraction degradation. The TG and DTG signals of reed samples treated with increasing concentration of potassium carbonate (0.6–10 wt%) indicated a catalytic effect of the salt on reed decomposition. The temperature of maximum weight loss rate, DTGmax, exponentially decreased with increasing catalyst content, whilst the initial temperature of the decomposition decreased linearly. The pyrolysis studies were carried out in a Pyrex vertical reactor with sintered glass disc to hold the sample and to aid the fluidization with the nitrogen stream flowing upwards. The reactor was connected to a cyclone and condenser and a gas sampling device. Tar and char are collected and weighed. The gas chromatographic analysis of the evolved gases demonstrated the effect of pyrolysis temperature (400, 450, and 500 °C) on their composition. The temperature increase favors the yields of hydrocarbons, carbon monoxide and hydrogen at the expense of methanol and carbon dioxide. Similarly, reed samples treated with K2CO3 at 10 wt% were pyrolyzed and analyzed. Comparisons for the various parameters (yields, gas composition and carbon–hydrogen recovery) between the untreated and catalyzed reed conversion were also made.  相似文献   

14.
A technique has been developed to study cellulose pyrolysis by in situ visualization of cellulose transformation in a quartz capillary under a microscope using a CCD camera monitoring system and Raman spectroscopy. The processes and temperature of cellulose transformation during pyrolysis reaction can be observed directly. In situ visualization of reaction revealed that how oil is generated and expulsed concurrently from cellulose during pyrolysis. The in situ visualization result is the first direct evidence to show cellulose pyrolysis transformation. Pyrolysis characteristics were investigated under a highly purified N2 atmosphere using a thermogravimetric analyzer from room temperature to 500 °C at the heating rate of 5 °C/min. The results showed that three stages appeared in this thermal degradation process. Kinetic parameters in terms of apparent activation energy and pre-exponential factor were determined.  相似文献   

15.
Presently, dried distiller's grains with solubles (DDGS) are mainly used as the livestock feed. However, the high fiber content in DDGS limits its use as the diet for animals. Therefore, with increasing production of DDGS in recent years, it is desirable to find some new uses of DDGS for fuels and/or for high value chemicals. In this paper, experiments on pyrolysis of DDGS by spouted-entrained bed and by fixed bed are carried out, and the pyrolytic liquids are analyzed by GC/MS. It was found that the composition of the liquid by pyrolysis of DDGS in 490–570 °C by spouted-entrained bed is rather complex, and varies with pyrolytic temperature. However, the pyrolysis of DDGS material is not quite suitable to the process by spouted-entrained bed, due to a severe clogging problem inside the reactor. By fixed bed, the composition of the oil phase of the liquid obtained in 490–610 °C is much simpler, mainly phenol derivatives, fatty acids and their esters. When pyrolyzed at 570 °C with catalyst of CaO, aliphatic and aromatic hydrocarbons are generated more, while fatty acids and their esters are much reduced.  相似文献   

16.
Zijuan tea theabrownins (ZTTBs) was extracted from a type of fermented Zijuan tea and separated into fractions according to molecular weight. The extract was found to contain predominantly two fractions: <3.5 kDa and >100 kDa. These two fractions were analyzed for chemical composition, structural characteristics by Curie-point pyrolysis–gas chromatography–mass spectroscopy (CP-Py–GC/MS). The affects of pyrolysis temperature on pyrolytic products were also investigated. The fraction >100 kDa produced 50 GC/MS peaks during pyrolysis at 280 °C, 70 peaks at 386 °C, and 134 peaks at 485 °C. Fourteen of the products formed at 280 °C, 12 of those formed at 386 °C, and 21 of those formed at 485 °C were identified with match qualities of greater than 80%. The fraction <3.5 kDa gave 51 peaks during pyrolysis at 280 °C, 99 peaks at 386 °C, and 257 peaks at 485 °C. Six products formed at 280 °C, four products formed at 386 °C, and 61 products formed at 485 °C were identified with match qualities of greater than 80%. Pyrolysis temperatures of 485 °C and 386 °C were found suitable for the two fractions respectively. CP-Py–GC/MS revealed that, the fraction >100 kDa mainly consisted of phenolic pigments, esters, proteins, and polysaccharides, while the fraction <3.5 kDa contained no polysaccharide. CP-Py–GC/MS is an effective tool for the composition difference and structural characteristics of ZTTBs as well as other complex macromolecular plant pigments.  相似文献   

17.
Vitamin C is an essential nutrient needed for maintaining the human health. Strawberry fruit have a relatively high content of vitamin C, which is around 40-70 mg/ 100 g strawberries. However, vitamin C which is also known as ascorbic acid is easily degraded during storage. The objective of this research is to study the kinetics of degradation of vitamin C in fresh strawberry juices upon storage and to investigate the effect of storage temperatures and sugar addition on the ascorbic acid loss in strawberry juices. Four different types of fresh strawberry juices were prepared, namely A, B, C, and D. Juices A and C were stored at a room temperature of 28 °C, while samples B and D were stored at a refrigerated temperature of 8 °C. Furthermore, juices A and B were prepared without sugar addition, while sugar was added to juices C and D. The concentration of ascorbic acid in the juice was analyzed using iodimetric titration method. It was monitored every one hour for 8 hours of storage for the kinetics of ascorbic acid degradation study. The results showed that the degradation reaction of vitamin C followed zero-order kinetic models in all types of juices. The degradation reaction rate constants obtained for juices A, B, C, and D were 4.42; 3.63; 2.32; and 1.85 mg vitamin C/(100 ml. h), respectively. The activation energy for the vitamin C degradation in fresh strawberry juices with sugar and without sugar addition was estimated to be 1.90 kcal/ mol and 1.65 kcal/ mol, respectively. In conclusion, the storage at a lower temperature combined with sugar addition could effectively slow the rate of degradation of vitamin C.  相似文献   

18.
Samples of lignocellulosic material, stem of date palm (Phoenix dactylifera), were carbonized at different temperatures (400–600 °C) to investigate the effects of their impregnation with aqueous solution of either phosphoric acid (85 wt%) or potassium hydroxide (3 wt%). The products were characterized using BET nitrogen adsorption, helium pycnometry, Scanning Electron Microscopy (SEM) and oil adsorption from oil–water emulsion (oil viscosity, 60 mPa s at 25 °C). True densities of the products generally increased with increase in carbonization temperature. Impregnated samples (acid/base) showed wider differences in densities at 400 (1.978/1.375 g/cm3) than at 600 °C (1.955/2.010 g/cm3). Without impregnation, the sample carbonized at 600 °C showed higher density of 2.190 g/cm3. This sample has impervious surface with BET surface area of 124 m2/g. Acid-impregnated sample carbonized at 500 °C has the highest surface area of 1100 m2/g and most regular pores as evidenced by SEM micrographs. The amounts of oil adsorbed decreased with increase in carbonization temperature. Without impregnation, sample carbonized at 400 °C exhibited equilibrium adsorption of 4 g/g which decreases to about a half for sample carbonized at 600 °C. Impregnation led to different adsorptive capacities. There are respective increase (48 wt%) and decrease (5 wt%) by the acid- or base-impregnated samples carbonized at 600 °C. This suggests higher occurrence of oil adsorption-enhancing surface functional groups such as carbonyl, carboxyl and phenolic in the former sample.  相似文献   

19.
The pyrolysis of impregnated wood for the production of activated carbon is investigated. Laboratory experiments are performed in a TG for heating rates of 10 °C/min and 20 °C/min and a mathematical model for the kinetics of the pyrolysis process is developed and validated. The effect of the temperature and of the time duration of the pyrolysis process on the specific surface of the activated carbon is examined on the basis of experiments conducted in a crossed bed reactor. Results indicate that the temperature and the residence time in the pyrolysis reactor may be optimised. Indeed, it is found that the maximum specific surface of the end product is obtained for pyrolysis processes conducted at a temperature of 400 °C for a time period of 1 h.  相似文献   

20.
Tricyclic sulfonamides were synthesized by the generation of aziridinyllithiums from N-tosylaziridines followed by an intramolecular nucleophilic reaction and the subsequent reaction with electrophiles using a flow microreactor system. The reactions could be carried out at 0 °C, although much lower temperatures such as ?78 °C are needed for batch macro reactors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号