首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study focuses on experimental modeling of dry high-speed machining at 30 m/s cutting velocity using 6061-T6 aluminum alloy. A modified Hopkinson bar apparatus is employed to simulate orthogonal machining, a focused array of mercury–cadmium–tellurium infrared detectors is used to measure the temperature distribution around the tool tip, and a three-component quartz force transducer is utilized in measuring the cutting and feed forces. The resulting measurements confirm the assumption of steady-state cutting and allow for estimation of the partition of cutting work into heating, shear, and momentum changes in the chip. In an earlier study, measurements of temperature distributions showed little heating of the finished surface. Therefore, a study of the temperature fields generated during machining with a cutting tool that has a wear-land was performed. The wear-land contributes significantly to the heating of the workpiece and, at this speed, is the most likely mechanism for the generation of residual stresses and a temperature rise on the finished surface.  相似文献   

2.
Classical Darcy’s law assumes that the intrinsic permeability of porous media is only dependent on the micro-geometrical and structural properties of the inner geometry of the medium. There are, however, numerous experimental evidences that intrinsic permeability of shaly and clayey porous material is a function of the fluid phase used in the experiments. Several pore-scale processes have been proposed to explain the observed behavior. In this study, we conduct a detailed investigation of one such mechanism, namely the electrokinetic coupling. We have developed a numerical model to simulate this process at the pore-scale, incorporating a refined model of the electrical double layer. The model is used to conduct a detailed sensitivity analysis to elucidate the relative importance of several chemical–physical parameters on the intensity of the electrokinetic coupling. We found that permeability reduction due to this mechanism is likely to occur only if the effective pore-radius is smaller than 10−6 m. We also observed that electrokinetic coupling is strongly sensitive to electrophoretic mobility, which is normally reduced in clays compared to free-water conditions. Based on these findings, we set up a suite of stochastic pore-network simulations to quantify the extent of permeability reduction. We found that only if the effective pore-radius is ranging from 5 × 10−7 m to 5 × 10−8, electrokinetic coupling can be responsible for a 5–20% reduction of the intrinsic permeability, and, therefore, this mechanism has a minor impact on situations of practical environmental or mining interest.  相似文献   

3.
This paper describes a new test facility for determining material mechanical properties of structural concrete. The novel facility subjects 100 mm cubic concrete specimens to true multiaxial compression (σ1σ2σ3) up to 400 MPa at temperatures of up to 300°C. Forces are delivered through three independent loading frames equipped with servo-controlled hydraulic actuators creating uniform displacement boundary conditions via rigid platens. Specimen deformation is calculated from displacements measured to an accuracy of 10−6 m using a system of six laser interferometers. The combination of stiff loading frames, rigid platens, an accurate and reliable strain measurement system and a fast control system enables investigation of the material response in the post-peak range. The in-house developed control software allows complex multi-stage experiments involving (i) load and temperature cycling, (ii) small stress probes and (iii) arbitrary (pre-defined) loading paths. The program also enables experiments in which the values of the control parameters and the execution of the test sequences depend on the response of the specimen during the test. The capabilities of the facility are illustrated in this paper by experiments determining the effects of different heat-load regimes on the strength and stiffness of the material and tests identifying the tangent stiffness matrix of the material and the associated changes in the acoustic tensor under multiaxial compression.  相似文献   

4.
MEMS and NEMS devices typically have a large surface area to volume ratio. As a result, a major concern in the development of such devices is friction. Contact radii in MEMS and NEMS devices are expected to range from 10−8<a<10−5 m. This regime, which generally lies between the limits of single asperity and macroscopic contact, has yet to be explored because the apparati used to characterize friction at these limits do not operate in the range of forces appropriate to these length scales. A Mesoscale Friction Tester (MFT) with smooth probe tip radii from 50 nm to 50 μm and capable of applying forces ranging from 10 nN to l mN over contact radii from 10 nm to 10 μm has been developed to address this need. With carefully planned experiments, this device has the potential to help answer unresolved questions regarding friction mechanisms in the mesoscale range.  相似文献   

5.
Residual stresses in turned AISI 4340 steel   总被引:1,自引:0,他引:1  
The residual-stress distribution in the surface region of workpieces of annealed AISI 4340 steel that is turned under unlubricated conditions is determined using a deflection etching technique. The absolute value of the residual stresses at the machined surface are low and increase with an increase in depth beneath the machined surface to a maximum. They then decrease with a further increase in depth eventually becoming vanishingly small. Peak residual stresses are tensile at cutting speeds of 0.5 and 1.0 ms−1 and are compressive at a cutting speed of 1.5 ms−1 for all feed rates and depths of cut. Peak residual stresses and depth of the stressed region increase with an increase in feed rate and depth of cut, but decrease with an increase in cutting speed. The results of this investigation can be interpreted in terms of the variation of tool forces with cutting conditions.  相似文献   

6.
This work presents a novel experimental apparatus to determine the cutting effectiveness of grinding grits. The apparatus consists of a custom high-speed scratch tester, a force measurement system, and an offline 3D optical profilometer. Preliminary results based on a spherical tool are presented to demonstrate the usefulness of the system. Experiments were performed at depths of cut ranging from 0.3 μm to 7.5 μm at cutting speeds of 5 m/s to 30 m/s in 5 m/s increments. High resolution scans of the scratch profiles provided insight into the change in the cutting mechanics as the depth of cut and cutting speed were increased. In general, lower cutting speeds produced higher pile-up heights while higher cutting speeds produced lower pile-up heights. The force measurements indicated that the normal forces increased with cutting speed due to strain rate hardening of the workpiece material while the tangential forces decreased with cutting speed due to a reduction in the coefficient of friction and a change in the cutting mechanics. The force ratio data and the specific energy data both demonstrated high slopes at low depths of cut due to asperity contact between the tool and the workpiece. The modular nature of the developed system allows different grit geometries to be investigated.  相似文献   

7.
In this paper, we propose a novel method for evaluating the frequency response of shock accelerometers using Davies bar and interferometry. The method adopts elastic wave pulses propagating in a thin circular bar for the generation of high accelerations. The accelerometer to be examined is attached to one end of the bar and experiences high accelerations of the order of 103∼105 m/s2. A laser interferometer system is newly designed for the absolute measurement of the bar end motion. It can measure the motion of a diffuse surface specimen at a speed of 10−3 ∼100 m/s. Uncertainty of the velocity measurement is estimated to be±6×10−4 m/s, proving a high potential for use in the primary calibration of shock accelerometers. Frequency characteristics of the accelerometer are determined by comparing the accelerometer's output with velocity data of the interferometry in the frequency domain. Two piezoelectric-type accelerometers are tested in the experiment, and their frequency characteristics are obtained over a wide frequency range up to several ten kilohertz. It is also shown that the results obtained using strain gages are consistent with those by this new method. Paper was presented at the 1992 SEM Spring Conference on Experimental Mechanics held in Las Vegas, NV on June 8–11.  相似文献   

8.
In the present study plate-impact pressureshear experiments have been conducted to study the dynamic shearing resistance of molten metal films at shearing rates of approximately 107 s−1. These molten films are generated by pressure-shear impact of relatively low melt-point metals such as 7075-T6 Al alloy with high hardness and high flow-strength tool-steel plates. By employing high impact speeds and relatively smooth impacting surfaces, normal interfacial pressures ranging from 1–3 GPa and slip speeds of over 100 m/s are generated during the pressure-shear loading. The resulting friction stress (∼100 to 400 MPa) combined with the high slip speeds generate conditions conductive to interfacial temperatures approaching the fully melt temperature regime of the lower melt-point metal (7075-T6 aluminum alloy) comprising the tribo-pair. During pressure-shear loading, laser interferometry is employed to measure normal and transverse motion at the rear surface of the target plate. The normal component of the particle velocity provides the interfacial normal traction while the transverse component provides the shearing resistance of the interface as it passes through melt. In order to extract the critical interfacial parameters, such as the interfacial slip-speed and interfacial temperatures, a Lagrangian finiteelement code is developed. The computational procedure accounts for dynamic effects, heat conduction, contact with friction, and full thermo-mechanical coupling. At temperatures below melt the flyer and target materials are described as an isotropic thermally softening elastic-viscoplastic solid. For material elements with temperatures in excess of the melt point, a purely Newtonian fluid constitutive model is employed. The results of this hybrid experimental-computational study provide insights into the dynamic shearing resistance of molten metal films at high pressures and extremely high shearing rates.  相似文献   

9.
Using recently developed methods for application of a nano-scale random pattern having high contrast during SEM imaging, baseline full-field thermal deformation experiments have been performed successfully in an FEI Quanta SEM using 2D-DIC methods. Employing a specially redesigned commercial heating plate and control system, with modified specimen attachment procedures to minimize unwanted image motions, recently developed distortion correction procedures were shown to be effective in removing both drift and spatial distortion fields under thermal heating. 2D-DIC results from heating experiments up to 125°C on an aluminum specimen indicate that (a) the fully corrected displacement components have nearly random variability and a standard deviation of 0.02 pixels (≈25 nm at 200× and ≈0.5 nm at 10,000×) in each displacement component and (b) the unbiased measured strain fields have a standard deviation ≈150 × 10−6 and a mean value that is in good agreement with independent measurements, confirming that the SEM-DIC based method can be used for both micro-scale and nano-scale thermal strain measurements.
H. W. Schreier (SEM member)URL: www.correlatedsolutions.com
  相似文献   

10.
A piezoelectric stress gauge is described in this paper. Its major performance data are: measuring range 106–108 Pa, response time less than 7μs; non-linearity within ±1% and total stress measurement error within ± 10%. It can be used for measuring dynamic stress in soil, rock and concrete media as well as dynamic force and dynamic pressure in fluids.  相似文献   

11.
Conceptual improvements to a non-contact optical strain measurement technique for high-speed flywheels are presented. The improvements include a novel reflective pattern that allows for greater displacement sensitivity, the ability to measure rigid body vibrations and separate the associated vibration-induced displacement from the strain-induced displacement, and the ability to compensate for potential sensor drift during flywheel operation. The effects of rigid body rotor vibrations and sensor drift have been modeled and techniques to compensate for the errors associated with such effects are presented. Experimental results validate the ability of the technique to separate such vibrations from axisymmetric flexible body displacements, and to compensate for errors due to in-plane and out-of-plane pattern misalignment and sensor drift. Displacement measurements made on an aluminum rotor operating at a maximum speed of 16 krpm (255 m/s at the point of measurement) were made with ±1 μm accuracy. At this speed, hoop strains were found to be within 40–125 με of theoretical predictions, provided a proper accounting is made for thermal strains. Relative to the theoretical hoop strains, the measured hoop strains differed by 5.0 to 6.4% at 16 krpm.  相似文献   

12.
 A new laser Doppler anemometer optimized for high spatial resolution near a wall is described. The instrument uses short focal length optics, a mirror probe in the flow, and side-scatter collection to produce a measuring volume 35 μm in diameter by 66 μm long. Data are presented for a two-dimensional boundary layer, demonstrating the instrument’s ability to measure Reynolds shear stresses as close to the wall as 0.1 mm, or y +≈3. Received: 6 October 1995/Accepted: 9 April 1996  相似文献   

13.
The operation of microscopic high-speed liquid-metal jets in vacuum has been investigated. We show that such jets may be produced with good stability and collimation at higher speeds than previously demonstrated, provided that the nozzle design is appropriate and that cavitation-induced instabilities are avoided. The experiments with a medium-speed tin jet (u ∼ 60 m/s, Re=1.8×104, Z=2.9×10−3) showed that it operated without any signs of instabilities, whereas the stability of high-speed tin jets (d=30 μm, u=500 m/s, Re=5.6×104, Z=4.7×10−3) has been investigated via dynamic similarity using a water jet. Such a 500-m/s tin jet is required as the anode for high-brightness operation of a novel electron-impact X-ray source.  相似文献   

14.
A rigorous experimental and numerical assessment is made of the benefits and limits of miniaturization in the Kolsky bar system. The primary issues that arise in very high strain rate testing (stress equilibration, inertial effects, wave dispersion, friction, and controllability of deformations) are addressed through experiments coupled with explicit finite element analyses. A miniaturized Kolsky bar system that includes the input bar is developed, together with the use of the laser occlusive radius detector to obtain local measurements of specimen strain during the very high rate deformations. It is demonstrated that this miniaturized Kolsky bar system can be used to provide fully validated results, including the explicit determination of equilibration, over a very wide range of strain rates (1×103 to 5×104 s−1). The desired high strain rate can be achieved even at low accumulated strains, and the total strain developed can be controlled very effectively. Specific conditions are developed for determining the range of utility of the technique for a given material. The technique is applied to the characterization of 6061-T651 aluminum, and the results are compared with the results obtained using a conventional Kolsky bar.  相似文献   

15.
The digital image correlation (DIC) technique is successfully applied across multiple length scales through the generation of a suitable speckle pattern at each size scale. For microscale measurements, a random speckle pattern of paint is created with a fine point airbrush. Nanoscale displacement resolution is achieved with a speckle pattern formed by solution deposition of fluorescent silica nanoparticles. When excited, the particles fluoresce and form a speckle pattern that can be imaged with an optical microscope. Displacements are measured on the surface and on an interior plane of transparent polymer samples with the different speckle patterns. Rigid body translation calibrations and uniaxial tension experiments establish a surface displacement resolution of 1 μm over a 5×6 mm scale field of view for the airbrushed samples and 17 nm over a 100×100 μm scale field of view for samples with the fluorescent nanoparticle speckle. To demonstrate the capabilities of the method, we characterize the internal deformation fields generated around silica microspheres embedded in an elastomer under tensile loading. The DIC technique enables measurement of complex deformation fields with nanoscale precision over relatively large areas, making it of particular relevance to materials that possess multiple length scales.  相似文献   

16.
Particle-laden flows in a horizontal channel were investigated by means of a two-phase particle image velocimetry (PIV) technique. Experiments were performed at a Reynolds number of 6 826 and the flow is seeded with polythene beads of two sizes, 60 μm and 110 μm. One was slightly smaller than and the other was larger than the Kolmogorov length scale. The particle loadings were relatively low, with mass loading ratio ranging from 5×10−4 to 4×10−2 and volume fractions from 6×10−7 to 4.8×10−5, respectively. The results show that the presence of particles can dramatically modify the turbulence even under the lowest mass loading ratio of 5×10−4. The mean flow is attenuated and decreased with increasing particle size and mass loading. The turbulence intensities are enhanced in all the cases concerned. With the increase of the mass loading, the intensities vary in a complicated manner in the case of small particles, indicating complicated particle-turbulence interactions; whereas they increase monotonously in the case of large particles. The particle velocities and concentrations are also given. The particles lag behind the fluid in the center region but lead in the wall region, and this trend is more prominent for the large particles. The streamwise particle fluctuations are larger than the gas fluctuations for both sizes of particles, however their varying trend with the mass loadings is not so clear. The wall-normal fluctuations increase with increasing mass loadings. They are smaller in the 60 μm particle case but larger in the 110 μm particle case than those of the gas phase. It seems that the small particles follow the fluid motion to certain extent while the larger particles are more likely dominated by their own inertia. Finally, remarkable non-uniform distributions of particle concentration are observed, especially for the large particles. The inertia of particles is proved to be very important for the turbulence modification and particles behaviors and thus should be considered in horizontal channels. The project supported by the National Natural Science Foundation of China (50276021), and Program for New Century Excellent Talents in University, Ministry of Education (NCET-04-0708) The English text was polished by Yunming Chen.  相似文献   

17.
Heat and mass transfer characteristics of the self-similar boundary layer flows induced by continuous surfaces stretched with rapidly decreasing power law velocities Uw xm, m < –1 are considered for mixed convection flow. The effect of various governing parameters, such as Prandtl number Pr, temperature exponent n, dimensionless injection/suction velocity fw, and the mixed convection parameter = s Gr/Re2 are studied. These parameters have great effects on velocity and temperature profiles, heat transfer coefficient, and skin friction coefficient at the moving surface. Results show that similarity solutions exist only when the condition n = 2m – 1 is satisfied. Critical values of , Nu/Re0.5 and Cf Re0.5 are obtained for predominate natural convection for different Prandtl numbers at m = –2, –6 and n = –5, and –13 respectively. Results also show that the effect of buoyancy is more significant for weak than for strong suction. Furthermore, critical Prandtl numbers where fw profiles have minimums are obtained for m = –2 and –6. Finally, critical values of , Cf Re0.5 are also obtained for predominate natural convection for both m = –2 and –6.  相似文献   

18.
During the machining of metals, plastic deformation and friction lead to the generation of heat in the workpiece, which results in thermomechanically coupled deformation. Recently, several numerical models of this highly coupled process have been produced in response to increased interest in high speed machining. It is important to characterize the thermal field in the cutting zone in order to completely verify these models of high speed machining and to direct further advancement in this area. In this work, HgCdTe infrared detectors are used to experimentally measure the temperature distribution at the surface of a workpiece during orthogonal cutting. From these temperature measurements, the heat generated in the primary shear zone and the friction zone can be examined and characterized. A modified Hopkinson bar technique has been developed to perform orthogonal machining at speeds ranging from 10 to 100 m/s. In the present work, a cutting velocity of 15 m/s is employed in all the tests in order to demonstrate the capability of the apparatus and characterize thermal fields during low speed machining. Temperature fields are obtained during the orthogonal cutting of aluminum as a function of depth of cut. It is seen that depth of cut can vary both the maximum temperature as well as the distribution of the temperature field in the aluminum workpiece. the maximum temperature increased with depth of cut (238°C for 1.5 mm cut, 207°C for 1.0 mm cut and 138°C for 0.5 mm cut) and the temperature field extended further beneath the cut surface with decreasing depth of cut.  相似文献   

19.
A tensile and tensile-mode-fatigue tester has been developed for testing microscale specimens in high humidity environments in order to investigate the fracture mechanisms of microelectromechanical materials. A humidity control system was installed on a tensile-mode fatigue tester equipped with an electrostatic force grip. A specimen and a griping device were inserted into a small chamber and the humidity was controlled by air flow from a temperature and humidity chamber. The humidity stability was within ±2%RH for humidities in the range 25–90%RH for eight hours of testing. Fatigue tests were performed on single-crystal silicon (SCS) specimens in constant humidity environments and laboratory air for up to 106 cycles. The gauge length, width, and thickness of the SCS specimens were 100 or 500 μm, 13.0 μm, and 3.3 μm, respectively. The average tensile strength was 3.68 GPa in laboratory air; this value decreased in high humidity environments. Fatigue failure was observed during cyclic loading at stresses lower than the average strength. A reduction in the fatigue strength was observed at high relative humidities. Different fracture origins and fracture behaviors were observed in tensile tests and fatigue tests, which indicates that the water vapor in air affects the fatigue properties of SCS specimens.  相似文献   

20.
In this work, we studied the melt rheology of multigraft copolymers with a styrene–acrylonitrile maleic anhydride (SANMA) terpolymer backbone and randomly grafted polyamide 6 (PA 6) chains. The multi-grafted chains were formed by interfacial reactions between the maleic anhydride groups of SANMA and the amino end groups of PA 6 during melt blending. Because of the phase separation of SANMA and PA 6, the grafted SANMA backbones formed nearly circular domains which were embedded in the PA 6 melt with a diameter in the order of 20 to 40 nm. The linear viscoelastic behaviour of PA 6/SANMA blends at a sufficiently large SANMA concentration displayed the characteristics of the critical gel state, i.e. the power relations G′ ∝ G′′ ∝ ω 0.5. In elongation, the PA 6/SANMA blend at the critical gel state showed a non-linear strain hardening behaviour already at a very small Hencky strain. In contrast to neat PA 6, the elasticity of the PA 6/SANMA blends was strongly pronounced, which was demonstrated by recovery experiments. Rheotens tests agreed with the linear viscoelastic shear oscillations and the measurements using the elongational rheometer RME. Increasing the SANMA concentration led to a larger melt strength and a reduced drawability. The occurrence of the critical gel state can be interpreted by the cooperative motion of molecules which develops between the grafted PA 6 chains of neighbouring micelle-like SANMA domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号