首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerical cochlear models are constructed by means of a finite element approach and their frequency and spatial responses are calculated. The cochlea is modelled as a coupled fluid-membrane system, for which both two- and three-dimensional models are considered. The fluid in the scala canals is assumed to be incompressible and the basilar membrane is assumed to be a locally reactive impedance wall or a lossy elastic membrane. With the three-dimensional models, the effects are examined of the spiral configuration of the cochlea, of the presence of the lamina and the ligament that narrows the coupling area between the two fluid canals (scala vestibuli and scala tympani), and of the extended reaction of the basilar membrane which cannot be included in case of the two-dimensional models. The conclusion is that these effects on the cochlear response and the inherent mechanism governing the cochlear behaviour are found to be rather secondary.  相似文献   

2.
Fluid motion resulting from the compressional excitation of the cochlear capsule due to bone conduction is examined in this paper. Vibrations of the skull deform the shape of the cochlear capsule and give rise to motion the fluid. A two-dimensional channel having a height to length ratio equal to ε is used to model the cochlea. The cochlear pressure is expressed as an integral equation in the cochlear partition velocity. In the limit as ε approaches zero the integral equation is solved and the cochlear pressure is expressed as an asymptotic expansion in ε. Rapid spatial variation in the velocity of the cochlear partition requires one to treat high-order fluid modes within the cochlear fluid. Hence, evanescent pressure modes are included in the analysis. Asymmetry in the oval and the round window velocity is shown to give rise to a pressure gradient across the cochlear partition and basilar membrane displacement. The vibration amplitude of the cochlear partition is shown to depend on the value of the ratio of the oval and the round window impedance.  相似文献   

3.
We calculate traveling waves in the mammalian cochlea, which transduces acoustic vibrations into neural signals. We use a WKB-based mechanical model with both the tectorial membrane (TM) and basilar membrane (BM) coupled to the fluid to calculate motions along the length of the cochlea. This approach generates two wave numbers that manifest as traveling waves with different modes of motion between the BM and TM. The waves add differently on each mass, producing distinct tuning curves and different characteristic frequencies (CFs) for the TM and the BM. We discuss the effect of TM stiffness and coupling on the waves and tuning curves. We also consider how the differential motions between the masses could influence the cochlear amplifier and how mode conversion could take place in the cochlea.  相似文献   

4.
The inner ear is continually exposed to pressure fluctuations in the infrasonic frequency range (< 20 Hz) from external and internal body sources. The cochlea is generally regarded to be insensitive to such stimulation. The effects of stimulation at infrasonic frequencies (0.1 to 10 Hz) on endocochlear potential (EP) and endolymph movements in the guinea pig cochlea were studied. Stimuli were applied directly to the perilymph of scala tympani or scala vestibuli of the cochlea via a fluid-filled pipette. Stimuli, especially those near 1 Hz, elicited large EP changes which under some conditions exceeded 20 mV in amplitude and were equivalent to a cochlear microphonic (CM) response. Accompanying the electrical responses was a cyclical, longitudinal displacement of the endolymph. The amplitude and phase of the CM varied according to which perilymphatic scala the stimuli were applied to and whether a perforation was made in the opposing perilymphatic scala. Spontaneously occurring middle ear muscle contractions were also found to induce EP deflections and longitudinal endolymph movements comparable to those generated by perilymphatic injections. These findings suggest that cochlear fluid movements induced by pressure fluctuations at infrasonic frequencies could play a role in fluid homeostasis in the normal state and in fluid disturbances in pathological states.  相似文献   

5.
What type of force does the cochlear amplifier produce?   总被引:1,自引:0,他引:1  
Recent experimental measurements suggest that the mechanical displacement of the basilar membrane (BM) near threshold in a viable mammalian cochlea is greater than 10(-8) cm, for a stimulus sound-pressure level at the eardrum of 20 microPa. The associated response peak is very sensitive to the physiological condition of the cochlea. In the formulation of all recent cochlear models, it has been explicitly assumed that this peak is produced by the cochlear amplifier injecting a large amount of energy into the cochlea, thereby altering the real component of the BM impedance. In this paper, a new cochlear model is described which produces a realistic response by assuming that the cochlear amplifier force acts at a phase such that the main effect is to reduce the imaginary component of the BM impedance. In this new model, the magnitude of the cochlear amplifier force required to produce a realistic response is much smaller than in the previous models. It is suggested that future experimental investigations should attempt to determine both the magnitude and the phase of the forces associated with the cochlear amplifier.  相似文献   

6.
Hopf-type nonlinearities have been recently found to be the basic mechanism of the mammalian cochlear response. Physiology requires that these nonlinearities be coupled. By suitably implementing a biomorphic coupling scheme of cochlear nonlinearities, we obtain a simple cochlea model that faithfully reproduces measured basilar membrane response, validating the utility of the Hopf amplifier concept. Our results demonstrate that the correct coupling between nonlinearities is as important as the nonlinearities themselves.  相似文献   

7.
A hybrid analytical-numerical model using Galerkin approximation to variational equations has been developed for predicting global cochlear responses. The formulation provides a flexible framework capable of incorporating morphologically based mechanical models of the cochlear partition and realistic geometry. The framework is applied for a simplified model with an emphasis on application of hybrid methods for three-dimensional modeling. The resulting formulation is modular, where matrices representing fluid and cochlear partition are constructed independently. Computational cost is reduced using two methods, a modal-finite-element method and a boundary element-finite-element method. The first uses a cross-mode expansion of fluid pressure (2.5D model) and the second uses a waveguide Green's-function-based boundary element method (BEM). A novel wave number approach to the boundary element formulation for interior problem results in efficient computation of the finite-element matrix. For the two methods a convergence study is undertaken using a simplified passive structural model of cochlear partition. It is shown that basilar membrane velocity close to best place is influenced by fluid and structural discretization. Cochlear duct pressure fields are also shown demonstrating the 3D nature of pressure near best place.  相似文献   

8.
The stability of a linear model of the active cochlea is difficult to determine from its calculated frequency response alone. A state space model of the cochlea is presented, which includes a discretized set of general micromechanical elements coupled via the cochlear fluid. The stability of this time domain model can be easily determined in the linear case, and the same framework used to simulate the time domain response of nonlinear models. Examples of stable and unstable behavior are illustrated using the active micromechanical model of Neely and Kim. The stability of this active cochlea is extremely sensitive to abrupt spatial inhomogeneities, while smoother inhomogeneities are less likely to cause instability. The model is a convenient tool for investigating the presence of instabilities due to random spatial inhomogeneities. The number of unstable poles is found to rise sharply with the relative amplitude of the inhomogeneities up to a few percent, but to be significantly reduced if the spatial variation is smoothed. In a saturating nonlinear model, such instabilities generate limit cycles that are thought to produce spontaneous otoacoustic emissions. An illustrative time domain simulation is presented, which shows how an unstable model evolves into a limit cycle, distributed along the cochlea.  相似文献   

9.
Using conformal mapping, fluid motion inside the cochlear duct is derived from fluid motion in an infinite half plane. The cochlear duct is represented by a two-dimensional half-open box. Motion of the cochlear fluid creates a force acting on the cochlear partition, modeled by damped oscillators. The resulting equation is one-dimensional, more realistic, and can be handled more easily than existing ones derived by the method of images, making it useful for fast computations of physically plausible cochlear responses. Solving the equation of motion numerically, its ability to reproduce the essential features of cochlear partition motion is demonstrated. Because fluid coupling can be changed independently of any other physical parameter in this model, it allows the significance of hydrodynamic coupling of the cochlear partition to itself to be quantitatively studied. For the model parameters chosen, as hydrodynamic coupling is increased, the simple resonant frequency response becomes increasingly asymmetric. The stronger the hydrodynamic coupling is, the slower the velocity of the resulting traveling wave at the low frequency side is. The model's simplicity and straightforward mathematics make it useful for evaluating more complicated models and for education in hydrodynamics and biophysics of hearing.  相似文献   

10.
A modified integral Werner method is used to calculate pressure scattered by an axisymmetric body immersed in a perfect and compressible fluid subject to a harmonic acoustic field. This integral representation is built as the sum of a potential of a simple layer and a potential of volume. It is equivalent to the exterior Helmholtz problem with Neumann boundary condition for all real wave numbers of the incident acoustic field. For elastic structure scattering problems, the modified Werner method is coupled with an elastodynamic integral formulation in order to account for the elastic contribution of the displacement field at the fluid/structure interface. The resulting system of integral equations is solved by the collocation method with a quadratic interpolation. The introduction of a weighting factor in the modified Werner method decreases the number of volume elements necessary for a good convergence of results. This approach becomes very competitive when it is compared with other integral methods that are valid for all wave numbers. A numerical comparison with an experiment on a tungsten carbide end-capped cylinder allows a glimpse of the interesting possibilities for using the coupling of the modified Werner method and the integral elastodynamic equation used in this research.  相似文献   

11.
The slender axis-symmetric submarine body moving in the vertical plane is the object of our investigation.A coupling model is developed where displacements of a solid body as a Euler beam(consisting of rigid motions and elastic deformations) and fluid pressures are employed as basic independent variables,including the interaction between hydrodynamic forces and structure dynamic forces.Firstly the hydrodynamic forces,depending on and conversely influencing body motions,are taken into account as the governing equations.The expressions of fluid pressure are derived based on the potential theory.The characteristics of fluid pressure,including its components,distribution and effect on structure dynamics,are analyzed.Then the coupling model is solved numerically by means of a finite element method(FEM).This avoids the complicacy,combining CFD(fluid) and FEM(structure),of direct numerical simulation,and allows the body with a non-strict ideal shape so as to be more suitable for practical engineering.An illustrative example is given in which the hydroelastic dynamic characteristics,natural frequencies and modes of a submarine body are analyzed and compared with experimental results.Satisfactory agreement is observed and the model presented in this paper is shown to be valid.  相似文献   

12.
We discuss the role of nonclassicality of quantum states as a necessary resource in deterministic generation of multipartite entangled states. In particular for three bilinearly coupled modes of the electromagnetic field, tuning of the coupling constants between the parties allows the total system to evolve into both Bell and GHZ states only when one of the parties is initially prepared in a nonclassical state. A superposition resource is then converted into an entanglement resource.  相似文献   

13.
If one assumes a particular form of non-minimal coupling, called the conformal coupling, of a perfect fluid with gravity in the fluid–gravity Lagrangian then one gets modified Einstein field equation. In the modified Einstein equation the effect of the non-minimal coupling does not vanish if one works with spacetimes for which the Ricci scalar vanishes. In the present work we use the Schwarzschild metric in the modified Einstein equation, in the presence of non-minimal coupling with a fluid, and find out the energy–density and pressure of the fluid. In the present case the perfect fluid is part of the solution of the modified Einstein equation. We also solve the modified Einstein equation, using the flat spacetime metric and show that in the presence of non-minimal coupling one can accommodate a perfect fluid of uniform energy–density and pressure in the flat spacetime. In both the cases the fluid pressure turns out to be negative. Except these non-trivial solutions it must be noted that the vacuum solutions also remain as trivial valid solutions of the modified Einstein equation in the presence of non-minimal coupling.  相似文献   

14.
Distortion product otoacoustic emission (DPOAE) fine structure is due to the interaction of two major components coming from different places in the cochlea. One component is generated from the region of maximal overlap of the traveling waves generated by the two primaries and is attributed to nonlinear distortion (nonlinear component). The other component arises predominantly from the tonotopic region of the distortion product and is attributed to linear coherent reflection (reflection component). Aspirin (salicylate) ototoxicity can cause reversible hearing loss and reduces otoacoustic emission generation in the cochlea. The two components are expected to be affected differentially by cochlear health. Changes in DPOAE fine structure were recorded longitudinally in three subjects before, during, and after aspirin consumption. Full data sets were analyzed for two subjects, but only partial data could be analyzed from the third subject. Resulting changes in the two components of DPOAE fine structure revealed variability among subjects and differential effects on the two components. For low-intensity primaries, both components were reduced with the reflection component being more vulnerable. For high-intensity primaries, the nonlinear component showed little or no change, but the reflection component was always reduced.  相似文献   

15.
The formulation is developed in the frequency domain and the finite difference method is used for the numerical solution of the scalar wave equation, written in terms of the transverse components of the magnetic field. As a result a conventional eigenvalue problem is obtained without the presence of spurious modes due to the implicit inclusion of the divergence of the magnetic field equal to zero. The formulation is developed to include biaxial anisotropic dielectrics with an index profile varying arbitrarily in the cross section of the waveguide under analysis. This formulation is then applied to the analysis of the influence on the dispersion characteristics of the dimensions of asymmetric coupled rectangular uniaxial anisotropic dielectric waveguides. As expected, the reduction of the height or the width of one of the rectangular dielectric waveguides causes the dispersion curves to move towards higher frequencies.  相似文献   

16.
Starting from an off-shell formulation of N = 2 supergravity, we construct the matter multiplet in its complex form (the scalar hypermultiplet) and in its real form. We construct the matter action which describes the coupling to supergravity. The interpretation where the 32 + 32 field components of the minimal gravitational multiplet are independent dynamical variables is known to be inconsistent for pure supergravity. We find it to be consistent when coupled to at least one matter multiplet, and to give rise to supersymmetric σ-models when coupled to at least two matter multiplets.  相似文献   

17.
部分浸没圆柱壳声固耦合计算的半解析法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
郭文杰  李天匀  朱翔  屈凯旸 《物理学报》2018,67(8):84302-084302
部分浸没圆柱壳-流场耦合系统的声振分析是一种典型的半空间域内声固耦合问题,其振动及声学计算目前主要依赖于数值方法求解,但无论从检验数值法还是从机理上揭示其声固耦合特性,解析或半解析方法的发展都是不可或缺的.本文提出了一种半解析方法,先将声场坐标系建立在自由液面上,采用正弦三角级数来满足自由液面上的声压释放边界条件;接着基于二维Flügge薄壳理论建立了以圆柱圆心为坐标原点的壳-液耦合系统的控制方程;然后再利用Galerkin法处理声固耦合界面的速度连续条件,推导得到声压幅值与壳体位移幅值之间的关系矩阵并求解该耦合系统的振动和水下声辐射.与有限元软件Comsol进行了耦合系统自由、受迫振动和水下辐射噪声计算结的对比分析,表明本文方法准确可靠.本文的研究为解析求解弹性结构与声场部分耦合的声振问题提供了新的思路.  相似文献   

18.
19.
No sharpening? a challenge for cochlear mechanics   总被引:1,自引:0,他引:1  
Recent data on mechanical movements of the basilar membrane (BM) suggest that the part played in cochlear physiology by a sharpening mechanism is much less important than hitherto has been thought. In an extreme view, one could dispense with a sharpening mechanism completely and assume that (near the threshold) hair-cell excitation is proportional to BM velocity, or a very simple linear transform of it. In the present paper the consequences of this idea are worked out. A theoretical cochlear movement pattern is constructed that shows the same frequency selectivity as an average reverse-correlation function of an auditory nerve fiber. This response is called a revcor-spectrumlike response. Cochlear mechanics is then simplified to a pure shortwave model. It is shown that, if the cochlea model should present a revcor-spectrumlike response, this can only be achieved when the resistance component of the BM impedance is negative over a part of the length of the cochlea. This result is refined in several respects, and it is shown that a model equipped with the right kind of BM impedance function can have a response of the required type. It remains difficult to conceive of a physiological mechanism that would cause the desired effect on the BM impedance.  相似文献   

20.
Otoacoustic emissions are an indicator of a normally functioning cochlea and as such are a useful tool for non-invasive diagnosis as well as for understanding cochlear function. While these emitted waves are hypothesized to arise from active processes and exit through the cochlear fluids, neither the precise mechanism by which these emissions are generated nor the transmission pathway is completely known. With regard to the acoustic pathway, two competing hypotheses exist to explain the dominant mode of emission. One hypothesis, the backward-traveling wave hypothesis, posits that the emitted wave propagates as a coupled fluid-structure wave while the alternate hypothesis implicates a fast, compressional wave in the fluid as the main mechanism of energy transfer. In this paper, we study the acoustic pathway for transmission of energy from the inside of the cochlea to the outside through a physiologically-based theoretical model. Using a well-defined, compact source of internal excitation, we predict that the emission is dominated by a backward traveling fluid-structure wave. However, in an active model of the cochlea, a forward traveling wave basal to the location of the force is possible in a limited region around the best place. Finally, the model does predict the dominance of compressional waves under a different excitation, such as an apical excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号