首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The imine bond--formed by the reversible condensation of an amine and an aldehyde--and its applications as a dynamic covalent bond in the template-directed synthesis of molecular compounds, will be the focus of this tutorial review. Template-directed synthesis--or expressed another way, supramolecular assistance to covalent synthesis--relies on the use of reversible noncovalent bonding interactions between molecular building blocks in order to preorganise them into a certain relative geometry as a prelude to covalent bond formation to afford the thermodynamically preferred product. The use of this so-called dynamic covalent chemistry (DCC) in templated reactions allows for an additional amount of reversibility, further eliminating potential kinetic products by allowing the covalent bonds that are formed during the template-directed reaction to be 'proofread for errors', thus making it possible for the reaction to search out its thermodynamic minimum. The marriage of template-directed synthesis with DCC has allowed chemists to construct an increasingly complex collection of compounds from relatively simple precursors. This new paradigm in organic synthesis requires that each individual piece in the molecular self-assembly process is preprogrammed so that the multiple recognition events expressed between the pieces are optimised in a highly cooperative manner in the desired product. It offers an extremely simple way of making complex mechanically interlocked compounds--e.g., catenanes, rotaxanes, suitanes, Borromean rings and Solomon knots--from relatively simple precursors.  相似文献   

2.
Within the last two decades, dynamic covalent chemistry (DCC) has emerged as an efficient and versatile strategy for the design and synthesis of complex molecular systems in solution. While early examples of supramolecularly assisted covalent synthesis at surfaces relied strongly on kinetically controlled reactions for post‐assembly covalent modification, the DCC method takes advantage of the reversible nature of bond formation and allows the generation of the new covalently bonded structures under thermodynamic control. These structurally complex architectures obtained by means of DCC protocols offer a wealth of solutions and opportunities in the generation of new complex materials that possess sophisticated properties. In this focus review we examine the formation of covalently bonded imine‐based discrete nanostructures as well as one‐dimensional (1D) polymers and two‐dimensional (2D) covalent organic frameworks (COFs) physisorbed on solid substrates under various experimental conditions, for example, under ultra‐high vacuum (UHV) or at the solid–liquid interface. Scanning tunneling microscopy (STM) was used to gain insight, with a sub‐nanometer resolution, into the structure and properties of those complex nanopatterns.  相似文献   

3.
The template-directed construction of crown-ether-like macrocycles around secondary dialkylammonium ions (R2NH2+) has been utilized for the expedient (one-pot) and high-yielding synthesis of a diverse range of mechanically interlocked molecules. The clipping together of appropriately designed dialdehyde and diamine compounds around R2NH2+-containing dumbbell-shaped components proceeds through the formation, under thermodynamic control, of imine bonds. The reversible nature of this particular reaction confers the benefits of "error-checking" and "proof-reading", which one usually associates with supramolecular chemistry and strict self-assembly processes, upon these wholly molecular systems. Furthermore, these dynamic covalent syntheses exploit the efficient templating effects that the R2NH2+ ions exert on the macrocyclization of the matched dialdehyde and diamine fragments, resulting not only in rapid rates of reaction, but also affording near-quantitative conversion of starting materials into the desired interlocked products. Once assembled, these "dynamic" interlocked compounds can be "fixed" upon reduction of the reversible imine bonds (by using BH3.THF) to give kinetically stable species, a procedure that can be performed in the same reaction vessel as the inital thermodynamically controlled assembly. Isolation and purification of the mechanically interlocked products formed by using this protocol is relatively facile, as no column chromatography is required. Herein, we present the synthesis and characterization of 1) a [2]rotaxane, 2) a [3]rotaxane, 3) a branched [4]rotaxane, 4) a bis [2]rotaxane, and 5) a novel cyclic [4]rotaxane, demonstrating, in incrementally more complex systems, the efficacy of this one-pot strategy for the construction of interlocked molecules.  相似文献   

4.
The quest to construct mechanically interlocked polymers, which present precise monodisperse primary structures that are produced both consistently and with high efficiencies, has been a daunting goal for synthetic chemists for many years. Our ability to realise this goal has been limited, until recently, by the need to develop synthetic strategies that can direct the formation of the desired covalent bonds in a precise and concise fashion while avoiding the formation of unwanted kinetic by-products. The challenge, however, is a timely and welcome one, as a consequence of, primarily, the potential for mechanically interlocked polymers to act as dynamic (noncovalent) yet robust (covalent) new materials for a wide array of applications. One such strategy which has been employed widely in recent years to address this issue, known as Dynamic Covalent Chemistry (DCC), is a strategy in which reactions operate under equilibrium and so offer elements of "proof-reading" and "error-checking" to the bond forming and breaking processes such that the final product distribution always reflects the thermodynamically most favourable compound. By coupling DCC with template-directed protocols, which utilise multiple weak noncovalent interactions to pre-organise and self-assemble simpler small molecular precursors into their desired geometries prior to covalent bond formation, we are able to produce compounds with highly symmetric, robust and complex topologies that are otherwise simply unobtainable by more traditional methods. Harnessing these strategies in an iterative, step-wise fashion brings us ever so much closer towards perfecting the controlled synthesis of high order main-chain mechanically interlocked polymers. This tutorial review focuses (i) on the development of DCC-namely, the formation of dynamic imine bonds-used in conjunction with template-directed protocols to afford a variety of mechanically interlocked molecules (MIMs) and ultimately (ii) on the synthesis of highly ordered poly[n]rotaxanes with high conversion efficiencies.  相似文献   

5.
Constitutional dynamic chemistry (CDC), including both dynamic covalent chemistry and dynamic noncovalent chemistry, relies on reversible formation and breakage of bonds to achieve continuous changes in constitution by reorganization of components. In this regard, CDC is considered to be an efficient and appealing strategy for selective fabrication of surface nanostructures by virtue of dynamic diversity. Although constitutional dynamics of monolayered structures has been recently demonstrated at liquid/solid interfaces, most of molecular reorganization/reaction processes were thought to be irreversible under ultrahigh vacuum (UHV) conditions where CDC is therefore a challenge to be achieved. Here, we have successfully constructed a system that presents constitutional dynamics on a solid surface based on dynamic coordination chemistry, in which selective formation of metal–organic motifs is achieved under UHV conditions. The key to making this reversible switching successful is the molecule–substrate interaction as revealed by DFT calculations.  相似文献   

6.
Dynamic covalent chemistry has rapidly become an important approach to access supramolecular structures. While the products generated in these reactions are held together by covalent bonds, the reversible nature of the transformations can limit the utility of many these systems in creating robust materials. We describe herein a method to form stable and commonly employed amide bonds by exploiting the reversible coupling of imines and acyl chlorides. The reaction employs easily accessible reagents, is dynamic under ambient conditions, without catalysts, and can be trapped with simple hydrolysis. This offers an approach to create broad families of amide products under thermodynamic control, including the selective formation of amide macrocycles or polymers.  相似文献   

7.
Dynamic covalent chemistry (DCC) has, in recent years, provided valuable tools to synthesize molecular architectures of increasing complexity. We have also taken advantage of imine DCC chemistry to prepare TPMA -based supramolecular cages for molecular recognition applications. However, the versatility of this approach has as a major drawback the intrinsic hydrolytic lability of imines, which hampers some applications. We present herein a synthetic strategy that combines the advantages of a thermodynamic-driven formation of a supramolecular structure using imine chemistry, together with the possibility to synthetize chiral hydrolytically stable structures through a [3,3]-sigmatropic rearrangement. A preliminary mechanistic analysis of this one-pot synthesis and the scope of the reaction are also discussed.  相似文献   

8.
Fourier-transform ion cyclotron resonance instrumentation is uniquely applicable to an unusual new ion chemistry, electron capture dissociation (ECD). This causes nonergodic dissociation of far larger molecules (42 kDa) than previously observed (<1 kDa), with the resulting unimolecular ion chemistry also unique because it involves radical site reactions for similarly larger ions. ECD is highly complementary to the well known energetic methods for multiply charged ion dissociation, providing much more extensive protein sequence information, including the direct identification of N- versus C-terminal fragment ions. Because ECD only excites the molecule near the cleavage site, accompanying rearrangements are minimized. Counterintuitively, cleavage of backbone covalent bonds of protein ions is favored over that of noncovalent bonds; larger (>10 kDa) ions give far more extensive ECD if they are first thermally activated. This high specificity for covalent bond cleavage also makes ECD promising for studying the secondary and tertiary structure of gaseous protein ions caused by noncovalent bonding.  相似文献   

9.
Dynamic covalent chemistry relates to chemical reactions carried out reversibly under conditions of equilibrium control. The reversible nature of the reactions introduces the prospects of "error checking" and "proof-reading" into synthetic processes where dynamic covalent chemistry operates. Since the formation of products occurs under thermodynamic control, product distributions depend only on the relative stabilities of the final products. In kinetically controlled reactions, however, it is the free energy differences between the transition states leading to the products that determines their relative proportions. Supramolecular chemistry has had a huge impact on synthesis at two levels: one is noncovalent synthesis, or strict self-assembly, and the other is supramolecular assistance to molecular synthesis, also referred to as self-assembly followed by covalent modification. Noncovalent synthesis has given us access to finite supermolecules and infinite supramolecular arrays. Supramolecular assistance to covalent synthesis has been exploited in the construction of more-complex systems, such as interlocked molecular compounds (for example, catenanes and rotaxanes) as well as container molecules (molecular capsules). The appealing prospect of also synthesizing these types of compounds with complex molecular architectures using reversible covalent bond forming chemistry has led to the development of dynamic covalent chemistry. Historically, dynamic covalent chemistry has played a central role in the development of conformational analysis by opening up the possibility to be able to equilibrate configurational isomers, sometimes with base (for example, esters) and sometimes with acid (for example, acetals). These stereochemical "balancing acts" revealed another major advantage that dynamic covalent chemistry offers the chemist, which is not so easily accessible in the kinetically controlled regime: the ability to re-adjust the product distribution of a reaction, even once the initial products have been formed, by changing the reaction's environment (for example, concentration, temperature, presence or absence of a template). This highly transparent, yet tremendously subtle, characteristic of dynamic covalent chemistry has led to key discoveries in polymer chemistry. In this review, some recent examples where dynamic covalent chemistry has been demonstrated are shown to emphasise the basic concepts of this area of science.  相似文献   

10.
Chemistry “beyond the molecule” is based on weak, noncovalent, and reversible interactions. As a consequence of these bonds being weak, structural organization by folding and self‐assembly can only be fully exploited with larger molecules that can provide multiple binding sites. Such “supramolecules” can now be synthesized and their folding into desired conformations predicted. A new level of chemistry can now be realized through the creation of non‐natural entities composed of molecular building blocks with defined secondary structures. Herein we define these building blocks as “supramolecular elements”. We anticipate that further research on such large molecules will reveal construction principles dictated by recurring motifs that govern structure formation through folding and self‐assembly. These principles are comparable to the organization of atoms in the Periodic Table of Chemical Elements and may lead to the establishment of a Periodic System of Supramolecular Elements.  相似文献   

11.
The first example of a bifunctional organocatalyst assembled through dynamic covalent chemistry (DCC) is described. The catalyst is based on reversible imine chemistry and can catalyze the Morita–Baylis–Hillman (MBH) reaction of enones with aldehydes or N‐tosyl imines. Furthermore, these dynamic catalysts were shown to be optimizable through a systemic screening approach, in which large mixtures of catalyst structures were generated, and the optimal catalyst could be directly identified by using dynamic deconvolution. This strategy allowed one‐pot synthesis and in situ evaluation of several potential catalysts without the need to separate, characterize, and purify each individual structure. The systems were furthermore shown to catalyze and re‐equilibrate their own formation through a previously unknown thiourea‐catalyzed transimination process.  相似文献   

12.
This paper describes the generation of reversible patterns of self-assembled monolayers (SAMs) on gold and silicon oxide surfaces via the formation of reversible covalent bonds. The reactions of (patterned) SAMs of 11-amino-1-undecanethiol (11-AUT) with propanal, pentanal, decanal, or terephthaldialdehyde result in dense imine monolayers. The regeneration of these imine monolayers to the 11-AUT monolayer is obtained by hydrolysis at pH 3. The (patterned) monolayers were characterized by Fourier transform infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, contact angle and electrochemical measurements, and atomic force microscopy. Imines can also be formed by microcontact printing of amines on terephthaldialdehyde-terminated substrates. Lucifer Yellow ethylenediamine was employed as a fluorescent amine-containing marker to visualize the reversible covalent patterning on a terephthaldialdehyde-terminated glass surface by confocal microscopy. These experiments demonstrate that with reversible covalent chemistry it is possible to print and erase chemical patterns on surfaces repeatedly.  相似文献   

13.
陈玉岩  刘刚 《化学进展》2007,19(12):1903-1908
动态组合化学是组合化学的一个新兴分支,在药物先导化合物的发现中有广阔的应用前景。在动态组合化学库中,利用靶标分子的诱导结合作用,通过可逆共价反应,能够选择性的筛选到与靶标分子存在强相互作用的优势化合物。本文按照动态组合化学方法简介、动态组合化学中的可逆共价化学、动态组合化学库的分类、动态组合化学库筛选方法的研究进展及动态组合化学在药物先导化合物发现过程中的应用等5个方面对动态组合化学进行了概述。  相似文献   

14.
Stacks of macrocycles, assembled using reversible disulfide-bond formation, are covalently captured by photoinitiated exchange of disulfide bonds, inducing the formation of hydrogels. This strategy allows access to structures beyond the thermodynamic minima traditionally targeted by dynamic combinatorial chemistry.  相似文献   

15.
Halogen bonds are a subset of noncovalent interactions with rapidly expanding applications in materials and medicinal chemistry. While halogen bonding is well known in organic compounds, it is new in the field of boron cluster chemistry. We have synthesized and crystallized carboranes containing Br atoms in two different positions, namely, bound to C‐ and B‐vertices. The Br atoms bound to the C‐vertices have been found to form halogen bonds in the crystal structures. In contrast, Br atoms bound to B‐vertices formed hydrogen bonds. Quantum chemical calculations have revealed that halogen bonding in carboranes can be much stronger than in organic architectures. These findings open new possibilities for applications of carboranes, both in materials and medicinal chemistry.  相似文献   

16.
One challenge in chemistry is the plethora of often disparate models for rationalizing the electronic structure of molecules. Chemical concepts abound, but their connections are often frail. This work describes a quantum-mechanical framework that enables a combination of ideas from three approaches common for the analysis of chemical bonds: energy decomposition analysis (EDA), quantum chemical topology, and molecular orbital (MO) theory. The glue to our theory is the electron energy density, interpretable as one part electrons and one part electronegativity. We present a three-dimensional analysis of the electron energy density and use it to redefine what constitutes an atom in a molecule. Definitions of atomic partial charge and electronegativity follow in a way that connects these concepts to the total energy of a molecule. The formation of polar bonds is predicted to cause inversion of electronegativity, and a new perspective of bonding in diborane and guanine−cytosine base-pairing is presented. The electronegativity of atoms inside molecules is shown to be predictive of pKa.  相似文献   

17.
18.
The molecular structure can be defined quantum mechanically thanks to the theory of atoms in molecules. Here, we report a new molecular model that reflects quantum mechanical properties of the chemical bonds. This graphical representation of molecules is based on the topology of the electron density at the critical points. The eigenvalues of the Hessian are used for depicting the critical points three-dimensionally. The bond path linking two atoms has a thickness that is proportional to the electron density at the bond critical point. The nuclei are represented according to the experimentally determined atomic radii. The resulting molecular structures are similar to the traditional ball and stick ones, with the difference that in this model each object included in the plot provides topological information about the atoms and bonding interactions. As a result, the character and intensity of any given interatomic interaction can be identified by visual inspection, including the noncovalent ones. Because similar bonding interactions have similar plots, this tool permits the visualization of chemical bond transferability, revealing the presence of functional groups in large molecules.  相似文献   

19.
Supramolecular gels derived from low molecular weight gelators are considered to be fascinating soft and smart materials. Gelators of this class form gel networks involving noncovalent interactions and show various applications in many areas. The structural softness and the arrangement of the gelator molecules in the aggregated state have the collaborative effect to intensify the properties of the molecules for their potential applications in material chemistry. Of the various properties, stimulus responsibility is a desired property of supramolecular gel that finds profound application in sensing. In this review, a comprehensive summary of the work on 3-aminopyridine-based amide, urea, imine and azo gelators of different architectures indicating their different uses in supramolecular chemistry has been focused.  相似文献   

20.
Dynamic assembly of macromolecules in biological systems is one of the fundamental processes that facilitates life. Although such assembly most commonly uses noncovalent interactions, a set of dynamic reactions involving reversible covalent bonding is actively being exploited for the design of functional materials, bottom‐up assembly, and molecular machines. This Minireview highlights recent implementations and advancements in the area of tunable orthogonal reversible covalent (TORC) bonds for these purposes, and provides an outlook for their expansion, including the development of synthetically encoded polynucleotide mimics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号