首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive and rapid LC‐MS/MS method was developed and validated for the determination of kadsurenone in rat plasma using lysionotin as the internal standard (IS). The analytes were extracted from rat plasma with acetonitrile and separated on a SB‐C18 column (50 × 2.1 mm, i.d.; 1.8 µm) at 30 °C. Elution was achieved with a mobile phase consisting of methanol–water–formic acid (65:35:0.1, v/v/v) at a flow rate of 0.30 mL/min. Detection and quantification for analytes were performed by mass spectrometry in the multiple reaction monitoring mode with positive electrospray ionization m/z at 357.1 → 178.1 for kadsurenone, and m/z 345.1 → 315.1 for IS. Calibration curves were linear over a concentration range of 4.88–1464 ng/mL with a lower limit of quantification of 4.88 ng/mL. The intra‐ and inter‐day accuracies and precisions were <8.9%. The LC‐MS/MS assay was successfully applied for oral pharmacokinetic evaluation of kadsurenone using the rat as an animal model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
A rapid, sensitive and selective LC‐MS/MS method for the quantitative analysis of 3‐hydroxy pterocarpan (S006‐1709) in female rat plasma has been developed and validated. A Discovery RP18 column was used for the chromatographic elution using acetonitrile and 0.1% acetic acid in water as mobile phase (80:20 v/v) at the flow rate of 0.5 mL/min. MS/MS analysis was performed using a triple quadrupole mass spectrometer with electrospray ionization in negative ion mode using biochanin as an internal standard (IS). Extraction of S006‐1709 and IS from rat plasma was done by liquid–liquid extraction method using diethyl ether. The LC‐MS/MS method was sensitive with 1.95 ng/mL as the limit of detection and 3.9 ng/mL as the lower limit of quantification. The method was linear in the concentration range of 3.9–1000 ng/mL. The percentage bias for intraday and interday accuracy was not greater than 4.2 and the %RSD for intraday and interday precision was not greater than 13.2. The recoveries of S006‐1709 and IS were 73.9–79.3 and 85.7%, respectively. S006‐1709 was found to be stable in various stability studies. The validated LC‐MS/MS method was successfully applied for the oral pharmacokinetics study of S006‐1709 at 10 mg/kg in female Sprague–Dawley rats. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
A fast and sensitive high performance liquid chromatography coupled with mass spectrometry (LC‐MS) method was developed and validated for the determination of cyclophosphamide in rat plasma with and without the combination of vitamin B6. After addition of digoxin used as the internal standard (IS), plasma samples were extracted by protein precipitation with acetonitrile (1:1, v/v), and the analytes were separated by a Kromasil C18 column (150 × 4.6 mm, 5 µm) with a mobile phase of acetonitrile–0.1% formic acid water (40:60, v/v). The detection of the analyte was monitored in positive electrospray ionization by selected ion monitoringmode. The linear range was 0.01–40 µg/mL for cyclophosphamide. The intra‐ and inter‐day precision and accuracy were all <15%. The extraction recoveries and matrix effects of the analyte and IS were all within acceptable range. The selectivity of the method was satisfactory with no endogenous interference. The results for stabilities of cyclophosphamide and IS under various conditions were all within the acceptance criteria. The validated method was successfully applied to evaluate the drug–drug interaction of cyclophosphamide and vitamin B6 in rat plasma. The results showed no differences of pharmacokinetic behaviors between cyclophosphamide administration with and without vitamin B6. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
A highly sensitive and specific LC‐ESI‐MS/MS method has been developed and validated for simultaneous quantification of felodipine (FDP) and metoprolol (MPL) in rat plasma (50 μL) using phenacetin as an internal standard (IS) as per the FDA guidelines. Liquid–liquid extraction method was used to extract the analytes and IS from rat plasma. The chromatographic resolution of FDP, MPL and IS was achieved with a mobile phase consisting of 0.2% formic acid in water–acetonitrile (25:75, v/v) with a time program flow gradient on a C18 column. The total chromatographic run time was 4.0 min and the elution of FDP, MPL and IS occurred at 1.05, 2.59 and 1.65 min, respectively. A linear response function was established for the range of concentrations 0.59–1148 and 0.53–991 ng/mL for FDP and MPL, respectively, in rat plasma. The intra‐ and inter‐day accuracy and precision values for FDP and MPL met the acceptance as per FDA guidelines. FDP and MPL were stable in battery of stability studies viz., bench‐top, auto‐sampler and freeze–thaw cycles. The validated assay was applied to a pharmacokinetic study in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
A simple, sensitive and specific high‐performance liquid chromatography mass spectrometry (LC‐MS/MS) method was developed and validated for the quantification of β‐hydroxy‐β‐methyl butyrate (HMB) in small volumes of rat plasma using warfarin as an internal standard (IS). The API‐4000 LC‐MS/MS was operated under the multiple reaction‐monitoring mode using the electrospray ionization technique. A simple liquid–liquid extraction process was used to extract HMB and IS from rat plasma. The total run time was 3 min and the elution of HMB and IS occurred at 1.48 and 1.75 min respectively; this was achieved with a mobile phase consisting of 0.1% formic acid in a water–acetonitrile mixture (15:85, v/v) at a flow rate of 1.0 mL/min on a Agilent Eclipse XDB C8 (150 × 4.6, 5 µm) column. The developed method was validated in rat plasma with a lower limit of quantitation of 30.0 ng/mL for HMB. A linear response function was established for the range of concentrations 30–4600 ng/mL (r > 0.998) for HMB. The intra‐ and inter‐day precision values for HMB were acceptable as per Food and Drug Administration guidelines. HMB was stable in the battery of stability studies, viz. bench‐top, autosampler freeze–thaw cycles and long‐term stability for 30 days in plasma. The developed assay method was applied to a bioavailability study in rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
7.
A selective and sensitive HPLC–MS/MS method was developed for the simultaneous determination of cucurbitacin IIa (cuIIa) and cucurbitacin IIb (cuIIb), the major bioactive cucurbitacins of Hemsleya amabilis, in rat plasma using euphadienol as internal standard (IS). After liquid–liquid extraction with dichloromethane, separation was achieved on a Syncronis HPLC C18 column (150 mm × 4.6 mm, 5 μm) using an isocratic mobile phase system consisting of acetonitrile–water (85:15, v/v) at a flow rate of 0.6 mL/min with a split ratio of 1:2. Detection was performed on a TSQ Quantum Ultra mass spectrometer equipped with an positive‐ion electrospray ionization source. The lower limits of quantification (LLOQs) were 0.25 and 0.15 ng/mL for cuIIa and cuIIb, respectively. The intra‐ and inter‐day precision was <11.5% for the LLOQs and each quality control level of the analytes, and accuracy was between ?9.1 and 7.6%. The extraction recoveries of the analytes and IS from rat plasma were all >87.1%. The method was fully validated and applied to compare the pharmacokinetic profiles of the two cucurbitacins in rat plasma after oral administration of H. amabilis extract between normal and indomethacin‐induced rats. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
A rapid, simple, selective and sensitive LC‐MS/MS method was developed for the determination of curculigoside in rat plasma. The analytical procedure involves extraction of curculigoside and syringin (internal standard, IS) from rat plasma with a one‐step extraction method by protein precipitation. The chromatographic resolution was performed on an Agilent XDB‐C18 column (4.6 × 50 mm, 5 µm) using an isocratic mobile phase of methanol with 0.1% formic acid and H2O with 0.1% formic acid (45:55, v/v) at a flow rate of 0.35 mL/min with a total run time of 2.0 min. The assay was achieved under the multiple‐reaction monitoring mode using positive electrospray ionization. Method validation was performed according to US Food and Drug Administration guidelines and the results met the acceptance criteria. The calibration curve was linear over 4.00–4000 ng/mL (R = 0.9984) for curculigoside with a lower limit of quantification of 4.00 ng/mL in rat plasma. The intra‐ and inter‐day precisions and accuracies were 3.5–4.6 and 0.7–9.1%, in rat plasma, respectively. The validated LC‐MS/MS method was successfully applied to a pharmacokinetic study of curculigoside in rats after a single intravenous and oral administration of 3.2 and 32 mg/kg. The absolute bioavailability of curculigoside after oral administration was 1.27%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Pogostone is an important constituent of Pogostemon cablin (Blanco) Benth., and possesses various known bioactivities. A rapid, simple and sensitive liquid chromatography tandem mass spectrometry (LC‐MS/MS) method was developed for the analysis of pogostone in rat plasma using chrysophanol as internal standard (IS). The analytes were extracted with methanol and separated using a reversed‐phase YMC‐UltraHT Pro C18 column. Elution was achieved with a mobile phase consisting of methanol–water (75:25, v/v) for 5 min at a flow rate of 400 μL/min. The precursor/product transitions (m/z) under MS/MS detection with negative electrospray ionization (ESI) were 223.0 → 139.0 and 253.1 → 224.9 for pogostone and IS, respectively. The calibration curve was linear over the concentration range 0.05–160 µg/mL (r = 0.9996). The intra‐ and inter‐day accuracy and precision were within ±10%. The validated method was successfully applied to the preclinical pharmacokinetic investigation of pogostone in rats after intravenous (5, 10 and 20 mg/kg) and oral administration (5, 10 and 20 mg/kg). Finally, the oral absolute bioavailability of pogostone in rats was calculated to be 70.39, 78.18 and 83.99% for 5, 10 and 20 mg/kg, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
A rapid and sensitive liquid chromatography tandem mass spectrometry (LC–MS/MS) method was developed and validated for the simultaneous determination of two baccharane glycosides (hosenkoside A and hosenkoside K) of total saponins of Semen Impatientis in rat plasma using mogroside V as the internal standard (IS). The analytes were separated using a C18 RP Agilent XDB column (1.8 μm, 50 × 2.1 mm i.d.) and detection of the compounds was done using a TSQ Quantum triple quadrupole mass spectrometer coupled with a negative electrospray ionization source under selection reaction monitoring mode. According to the US Food and Drug Administration guidelines, the established method was fully validated and the results were proved within acceptable limits. The lower limits of quantification of both analytes were 5 ng/mL. The validated method was successfully applied to a pharmacokinetic study of orally administered the total saponins of Semen Impatientis in rats.  相似文献   

11.
A rapid and specific LC‐MS/MS method has been developed for the simultaneous analysis of polygala acid, senegenin and 3,6′‐disinapoylsucrose (DSS) in rat plasma. The method was applied to the pharmacokinetics studies of polygala acid, senegenin and DSS. The analysis was carried out on an Agilent Eclipse plus C18 reversed‐phase column (100 × 4.6 mm, 3.5 µm) by gradient elution with methanol and ammonia (0.01%, v/v). The flow rate was 0.4 mL/min. All analytes including internal standard (IS) were monitored by selected reaction monitoring with an electrospray ionization source. Linear responses were obtained for polygala acid and DSS ranging from 2.5 to 2000 ng/mL, and senegenin ranging from 5 to 2000 ng/mL. The intra‐ and inter‐day precisions (relative standard deviation) were <11.34 and 8.99%. The extraction recovery ranged from 70.89 ± 4.60 to 88.49 ± 3.26%, and that for the IS was 77.23 ± 3.68%. Stability studies showed that polygala acid, senegenin and DSS are stable during the preparation and analytical process. The validated method was successfully used to determine the concentration–time profiles of polygala acid, senegenin and DSS. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A selective, sensitive and rapid LC–MS/MS method has been developed and validated as per US Food and Drug Administration regulatory guidelines for the simultaneous quantitation of colchicine and febuxostat in rat plasma. Colchicine and febuxostat were extracted from the rat plasma using 10% tert-butyl methyl ether in ethyl acetate using colchicine-d6 as an internal standard (IS). The chromatographic separation of colchicine, febuxostat and the IS was achieved using a mobile phase comprising 5 mm ammonium formate and 0.025% formic acid in acetonitrile (20:80, v/v) in isocratic mode on an Eclipse XDB-C18 column. The injection volume and flow rate were 5.0 μl and 0.9 ml/min, respectively. Colchicine and febuxostat were detected by positive electrospray ionization in multiple reaction monitoring mode using transition pairs (Q1 → Q3) of m/z 400.10 → 358.10 and 317.05 → 261.00, respectively. The assay was linear in the ranges of 0.25–254 and 2.60–622 ng/ml for colchicine and febuxostat, respectively. The inter- and intra-day precision values were 0.58–13.0 and 1.03–4.88% for colchicine and febuxostat, respectively. No matrix or carryover effects were observed during the validation. Both analytes were stable on the bench-top, in the autosampler and in storage (freeze–thaw cycles and long-term storage at −80 ° C). A pharmacokinetic study in rats was performed to show the applicability of the validated method.  相似文献   

13.
A fast, sensitive and reliable ultra fast liquid chromatography‐tandem mass spectrometry (UFLC‐MS/MS) method has been developed and validated for simultaneous quantitation of polygalaxanthone III (POL), ginsenoside Rb1 (GRb1), ginsenoside Rd (GRd), ginsenoside Re (GRe), ginsenoside Rg1 (GRg1) and tumulosic acid (TUM) in rat plasma after oral administration of Kai‐Xin‐San, which plays an important role for the treatment of Alzheimer's disease (AD). The plasma samples were extracted by liquid–liquid extraction using ethyl acetate–isopropanol (1:1, v/v) with salidrdoside as internal standard (IS). Good chromatographic separation was achieved using gradient elution with the mobile phase consisting of methanol and 0.01% acetic acid in water. The tandem mass spectrometric detection was performed in multiple reaction monitoring mode on 4000Q UFLC‐MS/MS system with turbo ion spray source in a negative and positive switching ionization mode. The lower limits of quantification were 0.2–1.5 ng/ml for all the analytes. Both intra‐day and inter‐day precision and accuracy of analytes were well within acceptance criteria (±15%). The mean absolute extraction recoveries of analytes and IS from rat plasma were all more than 60.0%. The validated method has been successfully applied to comparing pharmacokinetic profiles of analytes in normal and AD rat plasma. The results indicated that no significant differences in pharmacokinetic parameters of GRe, GRg1 and TUM were observed between the two groups, while the absorption of POL and GRd in AD group were significantly higher than those in normal group; moreover, the GRb1 absorbed more rapidly in model group. The different characters of pharmacokinetics might be caused by pharmacological effects of the analytes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
A sensitive, accurate, rapid and robust LC‐MS‐MS method for the quantification of aucubin, a major bioactive constituent of Aucuba japonica, Eucommia ulmoides and Plantago asiatica, was established and validated in rat plasma. Plasma samples were simply precipitated by adding methanol and the supernatant was chromatographed by a Diamonsil® C18(2) column with the mobile phase comprising a mixture of 10 mm ammonium acetate in methanol and that in water with the ratio of 50:50 (v/v). Quantification of aucubin was performed by mass spectrometry in the multiple‐reaction monitoring mode with positive atmospheric ionization at m/z 364 → 149 for aucubin, and m/z 380 → 165 for catalpol (IS), respectively. The retention time was 2.47 and 2.44 min for aucubin and the IS, respectively. The calibration curve (10.0–30,000 ng/mL) was linear (r2 > 0.99) and the lower limit of quantification was 10.0 ng/mL in the rat plasma sample. The method showed satisfactory results such as sensitivity, specificity, precision, accuracy, recovery, freeze–thaw and long‐term stability. This simple LC‐MS method was successfully applied in a pharmacokinetic study carried out in Sprague–Dawley rats after oral administration of aucubin at a single dose of 50 mg/kg. Herein the pharmacokinetic study of aucubin is reported for the first time. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
A new, rapid, sensitive and specific LC‐MS/MS method has been developed and validated for the simultaneous quantification of tenofovir and lamivudine in human plasma using abacavir as an internal standard. An API‐4000 LC‐MS/MS with electrospray ionization was operated in multiple‐reaction monitoring mode for the analysis. The analytes were extracted from plasma by solid‐phase extraction technique using an Oasis HLB cartridge. The reconstituted samples were chromatographed on a Chromolith ROD speed C18 column using a mixture of 0.1% formic acid in water and acetonitrile (90:10 v/v) at a flow‐rate of 1 mL/min. The method was validated as per the FDA guidelines. The calibration curves were found to be linear in the range of 5–600 ng/mL for tenofovir and 25– 4000 ng/mL for lamivudine. The intra‐ and inter‐day precision and accuracy results were well within the acceptable limits. A run time of 2.8 min consumed for each sample made it possible to analyze more samples per day. The proposed assay method was found to be applicable to a pharmacokinetic study in human male volunteers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
A rapid, simple, sensitive and selective LC‐MS/MS method has been developed and validated for quantification of nifedipine (NF) and atenolol (AT) in human plasma (250 μL). The analytical procedure involves a one‐step liquid–liquid extraction method using carbamazepine as an internal standard (IS). The chromatographic resolution was achieved on a Hypurity Advance C18 column using an isocratic mobile phase consisting of 5 mm ammonium acetate–acetonitrile (15:85, v/v) at flow rate of 1.0 mL/min. The LC‐MS/MS was operated under the multiple‐reaction monitoring mode using electrospray ionization. The total run time of analysis was 2 min and elution of NF, AT and IS occurred at 0.79, 1.04 and 0.76 min, respectively. A detailed method validation was performed as per the FDA guidelines and the standard curves found to be linear in the range of 1.02–101 ng/mL for NF and 5.05–503 ng/mL for AT, with a coefficient of correlation of ≥0.99 for both the drugs. NF and AT were found to be stable in a battery of stability studies, viz. bench‐top, auto‐sampler and repeated freeze–thaw cycles. The validated assay method was successfully applied to a pharmacokinetic study in humans. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
This study aims to develop and validate a simple and sensitive liquid chromatography with tandem mass spectrometry (LC–MS/MS) method for investigating the pharmacokinetic characteristics of bavachalcone. Liquid–liquid extraction was used to prepare plasma sample. Chromatographic separation of bavachalcone and IS was achieved using a Venusil ASB C18 (2.1 × 50 mm, 5 μm) column with a mobile phase of methanol (A)–water (B) (70:30, v /v). The detection and quantification of analytes was performed in selected‐reaction monitoring mode using precursor → product ion combinations of m/z 323.1 → 203.2 for bavachalcone, and m/z 373.0 → 179.0 for IS. Linear calibration plots were achieved in the range of 1–1000 ng/mL for bavachalcone (r 2 > 0.99) in rat plasma. The recovery of bavachalcone ranged from 84.1 to 87.0%. The method was precise, accurate and reliable. It was fully validated and successfully applied to pharmacokinetic study of bavachalcone.  相似文献   

18.
A simple, rapid and sensitive liquid chromatography–tandem mass spectroscopy (LC–MS/MS) method was developed and validated for the determination of ethyl gallate, a pharmacologically active constituent isolated from Lagerstroemia speciosa (Linn.) Pers. This method was used to examine the pharmacokinetics of ethyl gallate and its major metabolite gallic acid in rat plasma using propyl gallate as an internal standard. After precipitation of the plasma proteins with acetonitrile, the analytes were separated on a Zorbax SB‐C18 column (3.5 μm, 2.1 × 50 mm) with an isocratic mobile phase consisted of methanol–acetonitrile–10 mM ammonium acetate (10 : 25 : 65, v/v/v) containing 0.1% formic acid at a flow rate of 0.25 mL/min. The Agilent G6410A triple quadrupole LC/MS system was operated under the multiple‐reaction monitoring mode using the electrospray ionization technique in negative mode. The lower limits of quantification of gallic acid and ethyl gallate of the method were 0.5 and 1.0 ng/mL. The intra‐day and inter‐day accuracy and precision of the assay were less than 8.0%. This method has been applied successfully to a pharmacokinetic study involving the intragastric administration of ethyl gallate to rats. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A high‐throughput, simple, highly sensitive and specific LC‐MS/MS method has been developed for simultaneous estimation of simvastatin acid (SA), amlodipine (AD) and valsartan (VS) with 500 µL of human plasma using deuterated simvastatin acid as an internal standard (IS). The API‐4000 LC‐MS/MS was operated under the multiple reaction‐monitoring mode (MRM) using electrospray ionization. The assay procedure involved precipitation of SA, AD, VS and IS from plasma with acetonitrile. The total run time was 2.8 min and the elution of SA, AD, VS and IS occurred at 1.81, 1.12, 1.14 and 1.81 min, respectively; this was achieved with a mobile phase consisting of 0.02 m ammonium formate (pH 4.5):acetonitrile (20:80, v/v) at a flow rate of 0.50 mL/min on an X‐Terra C18 column. A linear response function was established for the range of concentrations 0.5–50 ng/mL (> 0.994) for VS and 0.2–50 ng/mL (> 0.996) for SA and AD. The method validation parameters for all three analytes met the acceptance as per FDA guidelines. This novel method has been applied to human pharmacokinetic study. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
A simple and sensitive liquid chromatography–electrospray ionization–tandem mass spectrometry (LC‐ESI‐MS/MS) technique was developed and validated for the determination of sibutramine and its N‐desmethyl metabolites (M1 and M2) in human plasma. After extraction with methyl t‐butyl ether, chromatographic separation of analytes in human plasma was performed using a reverse‐phase Luna C18 column with a mobile phase of acetonitrile–10 mm ammonium formate buffer (50:50, v/v) and quantified by ESI‐MS/MS detection in positive ion mode. The flow rate of the mobile phase was 200 μL/min and the retention times of sibutramine, M1, M2 and internal standard (chlorpheniramine) were 1.5, 1.4, 1.3 and 0.9 min, respectively. The calibration curves were linear over the range 0.05–20 ng/mL, for sibutramine, M1 and M2. The lower limit of quantification was 0.05 ng/mL using 500 μL of human plasma. The mean accuracy and the precision in the intra‐ and inter‐day validation for sibutramine, M1 and M2 were acceptable. This LC‐MS/MS method showed improved sensitivity and a short run time for the quantification of sibutramine and its two active metabolites in plasma. The validated method was successfully applied to a pharmacokinetic study in human. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号