首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pyrolysis curves in electrothermal atomic absorption spectrometry (ET AAS) and electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) have been compared for As, Se and Pb in lobster hepatopancreas certified reference material using Pd/Mg as the modifier. The ET AAS pyrolysis curves confirm that the analytes are not lost from the graphite furnace up to a pyrolysis temperature of 800 °C. Nevertheless, a downward slope of the pyrolysis curve was observed for these elements in the biological material using ETV-ICP-MS. This could be related to a gain of sensitivity at low pyrolysis temperatures due to the matrix, which can act as carrier and/or promote changes in the plasma ionization equilibrium. Experiments with the addition of ascorbic acid to the aqueous standards confirmed that the higher intensities obtained in ETV-ICP-MS are related to the presence of organic compounds in the slurry. Pyrolysis curves for As, Se and Pb in coal and coal fly ash were also investigated using the same Pd/Mg modifier. Carbon intensities were measured in all samples using different pyrolysis temperatures. It was observed that pyrolysis curves for the three analytes in all slurry samples were similar to the corresponding graphs that show the carbon intensity for the same slurries for pyrolysis temperatures from 200 °C up to 1000 °C.  相似文献   

2.
In the present work electrothermal vaporization (ETV) was used in both inductively coupled plasma mass spectrometry (ICP-MS) and optical emission spectrometry (OES) for sample introduction of solution samples. The effect of (Pd + Mg)-nitrate modifier and CaCl2 matrix/modifier of variable amounts were studied on ETV-ICP-MS signals of Cr, Cu, Fe, Mn and Pb and on ETV-ICP-OES signals of Ag, Cd, Co, Cu, Fe, Ga, Mn and Zn. With the use of matrix-free standard solutions the analytical curves were bent to the signal axes (as expected from earlier studies), which was observed in the 20–800 pg mass range by ICP-MS and in the 1–50 ng mass range by ICP-OES detection. The degree of curvature was, however, different with the use of single element and multi-element standards. When applying the noted chemical modifiers (aerosol carriers) in microgram amounts, linear analytical curves were found in the nearly two orders of magnitude mass ranges. Changes of the CaCl2 matrix concentration (loaded amount of 2–10 μg Ca) resulted in less than 5% changes in MS signals of 5 elements (each below 1 ng) and OES signals of 22 analytes (each below 15 ng). Exceptions were Pb (ICP-MS) and Cd (ICP-OES), where the sensitivity increase by Pd + Mg modifier was much larger compared to other elements studied. The general conclusions suggest that quantitative analysis with the use of ETV sample introduction requires matrix matching or matrix replacement by appropriate chemical modifier to the specific concentration ranges of analytes. This is a similar requirement to that claimed also by the most commonly used pneumatic nebulization of solutions, if samples with high matrix concentration are concerned.  相似文献   

3.
Reported are results for the quantitative determination of absolute transport efficiency in electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) for the Perkin-Elmer HGA-600MS electrothermal vaporizer. The absolute transport efficiencies for Mo, In, Tl and Bi were determined using experimental conditions typical of those applied to real analysis by ETV-ICP-MS. Experiments using an on-line filter trapping apparatus indicated that particles produced by the ETV device were smaller than 0.1 μm in diameter. The nature and condition of the ETV graphite surface, the length of the transfer tube, and the effect that diluted seawater and palladium modifiers have on analyte transport efficiency were investigated. Transport efficiency was comparable for all elements studied and was enhanced with previously used, rather than new, graphite tubes and when seawater and palladium carriers were present. When analyte was vaporized without carrier from a new graphite tube, the transport efficiency to the plasma was approximately 10%. Approximately 70% of the total amount of analyte vaporized was deposited within the ETV switching valve, 19% onto the transfer tubing and 1% onto the components comprising the torch assembly. These conditions represent the `worst case scenario', with analyte transport to the plasma increasing to approximately 20% or more with the addition of carrier.  相似文献   

4.
Platform and wall vaporization for electrothermal vaporization (ETV)-inductively coupled plasma mass spectrometry (ICP-MS) determination of some refractory elements (Ti, V, Cr, Mo, La and Zr) and Pb were comparatively studied with the use of poly (tetrafluoroethylene) (PTFE) as fluorinating reagent. The factors affecting the vaporization behaviors of the target analytes in the platform and tube wall vaporization including vaporization temperature and time, pyrolytic temperature and time were studied in detail, and the flow rates of carrier gas/auxiliary carrier gas, were carefully optimized. Under the optimal conditions, the signal profiles, signal intensity, interferences of coexisting ions and analytical reproducibility for wall and platform vaporization ETV-ICP-MS were compared. It was found that both wall and platform vaporization could give very similar detection limits, but the platform vaporization provided higher signal intensity and better precision for some refractory elements and Pb than the wall vaporization. Especially for La, the signal intensity obtained by platform vaporization was 3 times higher than that obtained by wall vaporization. For platform vaporization ETV-ICP-MS, the limits of detection (LODs) of 0.001 μg L−1 (La) ~ 0.09 μg L− 1 (Ti) with the relative standard deviations (RSDs) of 1.5% (Pb) ~ 15.5% (Zr) were obtained. While for wall vaporization ETV-ICP-MS, LODs of 0.005 μg L− 1 (La) ~ 0.4 μg L− 1 (Pb) with RSDs of 3.2% (Mo) ~ 12.8% (Zr) were obtained. Both platform and tube wall vaporization techniques have been used for slurry sampling fluorination assisted ETV-ICP-MS direct determination of Ti, V, Cr, Mo, La, Zr and Pb in certified reference materials of NIES No. 8 vehicle exhaust particulates and GBW07401 soil, and the analytical results obtained are in good agreement with the certified values.  相似文献   

5.
Ultrasonic slurry sampling electrothermal vaporization isotope dilution inductively coupled plasma mass spectrometry (USS-ETV-ID-ICP-MS) has been applied to the determination of Cd, Hg and Pb in coal fly ash samples. Thioacetamide (TAC) was used as the modifier. Since the sensitivities of the elements studied in coal fly ash slurry and aqueous solution were quite different, isotope dilution method was used for the determination of Cd, Hg and Pb in these coal fly ash samples. The isotope ratios of each element were calculated from the peak areas of each injection peak. This method has been applied to the determination of Cd, Hg and Pb in NIST SRM 1633a coal fly ash reference material and a coal fly ash sample collected from Kaohsiung area. Analysis results of reference sample NIST SRM 1633a coal fly ash agreed satisfactorily with the certified values. The other sample determined by isotope dilution and method of standard additions was agreed satisfactorily. Precision was better than 6% for most of the determinations and accuracy was better than 4% with the USS-ETV-ID-ICP-MS method. Detection limits estimated from standard addition curves were in the range of 24–58, 6–28 and 108–110 ng g−1 for Cd, Hg and Pb, respectively.  相似文献   

6.
The novel analytical application of the combination of an inline electrothermal vaporization (ETV) and nebulization source for inductively coupled plasma mass spectrometry (ICP-MS) has been studied. Wet plasma conditions are sustained during ETV introduction by 200 mL/min gas flow through the nebulizer, which is merged with the ETV transport line at the torch. The use of a wet plasma with ETV introduction avoided the need to change power settings and torch positions that normally accompany a change from wet to dry plasma operating conditions. This inline-ETV source is shown to have good detection limits for a variety of elements in both HNO3 and HCl matrices. Using the inline-ETV source, improved limits of detection (LOD) were obtained for elements typically suppressed by polyatomic interferences using a nebulizer. Specifically, improved LODs for 51V and 53Cr suffering from Cl interferences (51ClO+ and 53ClO+ respectively) in a 1% HCl matrix were obtained using the inline-ETV source. LODs were improved by factors of 65 and 22 for 51V and 53Cr, respectively, using the inline-ETV source compared to a conventional concentric glass nebulizer. For elements without polyatomic interferences, LODs from the inline-ETV were comparable to conventional dry plasma ETV-ICP time-of-flight mass spectrometry results. Lastly, the inline-ETV source offers a simple means of changing from nebulizer introduction to inline-ETV introduction without extinguishing the plasma. This permits, for example, the use of the time-resolved ETV-ICP-MS signals to distinguish between an analyte ion and polyatomic isobar.  相似文献   

7.
Ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry (USS-ETV-ICP-MS) has been applied to determine Ga, Ge, As, Se and Sb in fly ash samples. The influences of instrument operating conditions and slurry preparation on the ion signals were reported. Pd and ascorbic acid were used as the mixed modifiers to enhance the ion signals. This method has been applied to determine Ga, Ge, As, Se and Sb in NIST SRM 1633a and 1633b coal fly ash reference materials and a fly ash sample collected locally. Since the sensitivities of the elements studied in slurry solution and aqueous solution were different slightly, analyte addition technique was used for the determination of Ga, Ge, As, Se and Sb in these samples. The As and Se analysis results of the reference materials agreed with the certified values. The results for which no certified value was available were also found to be in good agreement between the ETV-ICP-MS results and the reference values. The reference value was obtained by digesting the samples and analyzing the digested sample solutions by pneumatic nebulization Dynamic Reaction Cell™ (DRC) ICP-MS. The method detection limits estimated from analyte addition curves were about 0.23, 0.13, 0.17, 0.25 and 0.11 μg g−1 for Ga, Ge, As, Se and Sb, respectively, in original fly ash samples.  相似文献   

8.
The mechanism of vaporization of yttrium and the rare earth elements (REEs) has been studied using graphite furnace atomic absorption spectrometry (GFAAS) and inductively-coupled plasma mass spectrometry (ICP-MS). The appearance temperatures for Y and the REEs obtained by GFAAS were generally identical to the appearance temperatures obtained using ETV-ICP-MS. At lower temperatures, Y and the REEs are predominantly vaporized in atomic form or as oxides, while at temperatures above 2500°C, the elements are vaporized as oxides and/or carbides. This accounts for the very high sensitivity of ETV-ICP-MS compared to GFAAS for the determination of these elements. Absolute limits of detection for Y and all of the REEs using ETV-ICP-MS ranged from 0.002 pg for Tm to 0.2 pg for Ce. The use of freon as a chemical modifier was effective in controlling analyte carbide formation and reducing memory effects.  相似文献   

9.
The suitability of eleven modifiers (Pd-, Mg-, K-, Ca- and NH4-salts) for electrothermal vaporization coupled to inductively coupled plasma mass spectrometry (ETV-ICP-MS) for the determination of Mn, Cu, Zn, Cd and Pb has been studied. Solutions containing varying quantities (10–2000 ng absolute) of these salts have been added to four different amounts of analyte to study their suitability as modifier and their mass dependent influence. The best sensitivity enhancement for all elements tested was achieved with IrCl3 and PdCl2. From a comparison of the effect of PdCl2 vs. Pd(NO3)2 it could be concluded that the mechanism of matrix modification also depends on the chemical form of the modifier. Particularly, for the volatile elements Cd and Zn differences in the behavior of the different chemical compounds of one metal (e.g. Pd) is evident, which shows that the enhancement effect is a result of the stabilization of the analytes in the graphite tube prior to vaporization and the improvement of the transport efficiency after vaporization.  相似文献   

10.
A method of electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) for the determination of trace lanthanides and yttrium in soil samples with a polytetrafluorethylene (PTFE) emulsion as chemical modifier to promote the vaporization of the analytes from the graphite furnace was developed in this paper. The analytical characteristics, spectral interference and matrix effect of the analytical method were evaluated and critically compared with those of pneumatic nebulization inductively coupled plasma mass spectrometry (PN-ICP-MS). Under the optimized operation conditions, the relative detection limits of lanthanides (La-Lu) and yttrium for ETV-ICP-MS and PN-ICP-MS were 0.4-20 ng l−1 and 1.0-21 ng l−1, respectively, the absolute detection limits for ETV-ICP-MS were 4-200 fg, which were improved by 1-2 orders of magnitude compared with PN-ICP-MS. While the analytical precision of ETV-ICP-MS is worse than that of PN-ICP-MS, with the R.S.D.s (%) of 4.1-10% for the former and 2.9-7.8% for the latter. Regarding to the matrix effect, both conventional method and stepwise dilution method were employed to observe the effect of matrix and the very similar results were obtained. It was found that the highest tolerance concentration of the matrix is 1000 mg l−1 and 800 mg l−1 for ETV-ICP-MS and PN-ICP-MS, respectively. To assess the accuracy, the proposed method was applied to the determination of trace lanthanides and yttrium in three different soil standard reference materials and one soil sample, and the determined values are in good agreement with the certified values or reference values.  相似文献   

11.
Electrothermal vaporization isotope dilution inductively coupled plasma mass spectrometry (ETV-ID-ICP-MS) has been applied to the determination of Cd, Hg and Pb in seawater samples. The isotope ratios of the elements studied in each analytical run were calculated from the peak areas of each isotope. Various modifiers were tested for the best signal of these elements. After preliminary studies, 0.15% m/v TAC and 4% v/v HCl were added to the sample solution to work as the modifier. The ETV-ID-ICP-MS method has been applied to the determination of Cd, Hg and Pb in NASS-4 and CASS-3 reference seawater samples and seawater samples collected from Kaohsiung area. The results for reference sample NASS-4 and CASS-3 agreed satisfactorily with the reference values. Results for other samples determined by isotope dilution and method of standard additions agreed satisfactorily. Detection limits were approximately 0.002, 0.005 and 0.001 ng ml−1 for Cd, Hg and Pb in seawater, respectively, with the ETV-ICP-MS method. Precision between sample replicates was better than 20% for most of the determinations.  相似文献   

12.
A novel method for the determination of trace elements in microliter samples using the tantalum filament electrothermal vaporization/low-pressure inductively coupled plasma (ETV/LP-ICP) atomic emission spectrometry has been developed. An improved tantalum filament ETV was directly coupled with LP-ICP system for efficient vaporization of microliter samples and further quantitative analysis. The experimental parameters including ETV current, rf power and mass flow rate of argon carrier gas were optimized using the copper emission signal produced by 5 μl of standard solution (5 μg/ml). Under the optimized condition, the analytical performances including linearity, precision and detection limit for the developed system were investigated. Absolute detection limits in the range of 22–391 pg for selected eight elements (Fe, Cu, Cr, Mn, Pb, K, Zn and Mg) were obtained with satisfactory precision (<8.9% RSD). The feasibility of the developed system has been demonstrated by analyzing wheat gluten NIST standard sample.  相似文献   

13.
The role of modifiers in electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) for the determination of refractory elements such as La or U and carbide forming elements such as B has been studied. Solutions of NH4F, NH4Cl, NH4Br, NaCl, NaF, NH4HSO4, (NH4)2HPO4, the gaseous halogenated hydrocarbons CHF3 and CCl2F2 and HCl have been used as modifiers.The mechanism of the modifier effect and the influence of modifiers on sensitivity enhancement have been investigated. The sensitivity enhancements are great enough to achieve absolute detection limits of 2–6 pg for boron and 10 fg for La and U. The signal reproducibility is 0.5–3.0% for a concentration of 1 μg 1−1 La and U, and 20 μg 1−1 boron. Therefore, by adding modifiers, the use of ETV-ICP-MS can be extended to trace element determination of refractory and carbide forming elements in μl amounts of sample.  相似文献   

14.
A method for the determination of trace impurities of phosphorus and arsenic in trichlorosilane with prior separation followed by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) has been developed. The preconcentration of the analytes from the sample matrix was made by adding cuprous chloride to a 10 mL trichlorosilane sample for the formation of non-volatile compounds with the elements of interest. Upon evaporation of trichlorosilane, the analytes retained in the residue were then determined in the presence of copper as modifier by ETV-ICP-MS. The dual role of cuprous chloride both in the preconcentration and instrumental determination was investigated and discussed. By meticulous control of experimental conditions, limits of detection for these two elements as low as sub-ng/g can be achieved. The method was applied to the determination of phosphorus and arsenic in a commercially available trichlorosilane sample.  相似文献   

15.
《Analytical letters》2012,45(5-6):603-612
In the present study the possibilities of electrothermal vaporization inductively coupled plasma optical emission spectrometry (ETV-ICP-OES) for characterization of archaeological glasses were investigated. The objects of our research were fragments of a colorless late antique Roman flat window glass (fifth century A.D.) and colored medieval glass bracelets (eleventh–twelfth century A.D.) excavated in the region of Pernik (West Bulgaria).

The finely ground glass samples were analyzed directly and CHF3 was used as evaporation and transport modifier. Dried aqueous standard solutions and certified reference materials with different matrix (glass, fly ash, and stream sediment) were used as calibration standards. No matrix effects were observed by the optimized conditions. Measurements were performed using common calibration curves obtained with all appropriate calibration standards and major, minor, and trace element concentrations were determined. ETV-ICP-OES analytical data were used to establish the type of glass, the fluxing agents, the typical coloring and decoloring elements, and the recipe norm.  相似文献   

16.
A method for the determination of trace impurities of phosphorus and arsenic in trichlorosilane with prior separation followed by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) has been developed. The preconcentration of the analytes from the sample matrix was made by adding cuprous chloride to a 10 mL trichlorosilane sample for the formation of non-volatile compounds with the elements of interest. Upon evaporation of trichlorosilane, the analytes retained in the residue were then determined in the presence of copper as modifier by ETV-ICP-MS. The dual role of cuprous chloride both in the preconcentration and instrumental determination was investigated and discussed. By meticulous control of experimental conditions, limits of detection for these two elements as low as sub-ng/g can be achieved. The method was applied to the determination of phosphorus and arsenic in a commercially available trichlorosilane sample.  相似文献   

17.
Arslan Z 《Talanta》2005,65(5):1326-1334
A method is developed for determination of trace elements, including Ag, As, Cd, Co, Cr, Cu, Mn, Ni, Se, Tl and Zn, in fish otoliths by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS). Hydrofluoric acid was used to precipitate calcium resulting from acid dissolution of otolith calcium carbonate. Initial acidity of the sample solution influenced the precipitation efficiency of calcium fluoride. Up to 99.5% of Ca was precipitated in solutions that contained less than 2% (v/v) HNO3. Recoveries of the elements obtained from spiked artificial otolith solutions were between 90 and 103%. Stabilization of the elements within the ETV cell was achieved with 0.3 μg Pd/0.2 μg Rh chemical modifier that also afforded optimum sensitivity for multielement determination. The method was validated by the analysis of a fish otolith reference material (CRM) of emperor snapper, and then applied to the determination of the trace elements in otoliths of several fish species captured in Raritan Bay, New Jersey. Results indicated that fish physiology and biological processes could influence the levels of Cu, Mn, Se and Zn in the otoliths of fish inhabiting a similar aqueous environment. Otolith concentrations of Cr and Ni did not show any significant differences among different species. Concentrations for Ag, As, Cd, Co and Tl were also not significantly different, but were very low indicating low affinity of otolith calcium carbonate to these elements.  相似文献   

18.
The direct determination of trace impurities in Al2O3 ceramic basic powders by ICP-MS using electrothermal evaporation (ETV) with slurry sampling has been investigated. To increase interference-free analyte volatilization, the use of the palladium-group modifiers (PGM) IrCl3, Pd(NO3)2, and PdCl2 for the determination of Ca, Fe, Ga, Mg, Mn, Na, Ni, and V in Al2O3 powders was studied. Their role, which in ETV-ICP-MS and ETV-ICP-OES is to stabilize the investigated analyte during the ashing phase, to increase vaporization of the matrix, and to reduce transport losses was investigated. Optimum analysis results were obtained with PdCl2 modifier when 500 ng Pd was used for a sample weight of 100 microg Al2O3 injected into the ETV. Calibration was performed by standard addition with aqueous solutions of the analytes. The RSDs calculated from triplicate analysis ranged form 5 to 10%. Detection limits between 0.07 microg g(-1) (Ga) and 1.1 microg g(-1) (Na) were achieved. The accuracy was proven for the elements Ca, Fe, Ga, Mg, Mn, Na, Ni, and V by analyzing an NIST standard reference Al2O3 material (SRM 699) with a middle grain size of 16.4 microm. The analytical method was used for the analysis of Al2O3 powder (AKP 30, Sumitomo, Japan) with impurities in the low microg g(-1) range and a middle grain size of 1.1 microm. The results obtained for the elements Ca, Fe, Ga, Mg, Mn, Na, Ni, and V were comparable with those obtained by ICP-MS subsequent to conventional decomposition with hydrochloric acid at high pressure.  相似文献   

19.
Electrothermal vaporization (ETV) sample introduction in inductively coupled plasma atomic emission spectrometry suffers from severe matrix effects. In the present study, the differences between wet and dry plasma conditions are studied. In addition, the influence of the sample composition was investigated. An inductively coupled plasma optical emission spectrometer, with detection based on charge transfer, allowed the simultaneous measurement of ionic and atomic emission line intensities during the transient signal. Mg and Cr were the test elements. The ion-to-atom line ratio increases at higher power settings, but the changes were larger when a nebulizer was used for sample introduction than with ETV sample introduction. The decrease of ion-to-atom line ratios at increasing observation height was more pronounced when ETV was used, due to the absence of water vapor. The gas flow rate showed a stronger influence for nebulization than for ETV. In the presence of a calcium matrix, lower ion-to-atom line ratios were observed, but the ratio did not change significantly within the transient emission signal. Similar line ratios were observed for different amounts of calcium matrix. The values of ion-to-atom line ratios for Mg and Cr indicate that the plasma ionization and thermal characteristics are not modified due to the presence of the calcium matrix.  相似文献   

20.
A new method of ionic liquids based cycle flow single drop microextraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) was proposed for the determination of trace Co, Hg and Pb with 1-(2-pyridylazo)-2-naphthol (PAN) as both extractant and chemical modifier and 1-butyl-3-methylimidazolium hexafluorophosphate as the extraction solvent. Several factors that influence the microextraction efficiency, such as sample pH, sample flow rate, microdrop volume and extraction time, were investigated and the optimized microextraction conditions were established. Co, Hg and Pb in the post-extraction ionic liquids phase were directly determined by ETV-ICP-MS with the use of PAN as chemical modifier. The chemical modification of PAN in ETV-ICP-MS was studied and the factors affecting the vaporization behaviors of target analytes were investigated. Under the optimized conditions, the detection limits of the method were 1.5, 9.8 and 6.7 pg/mL for Co, Hg and Pb, with the relative standard deviations for 0.5 ng/mL (n = 7) of Co, Hg and Pb were 7.7%, 5.2% and 12.0%, respectively. After 10 min of extraction, the enrichment factors were 350 (Co), 50 (Hg) and 60 (Pb). The proposed method was successfully applied to the determination of trace Co, Hg and Pb in human serum and environmental water samples. In order to validate the developed method, a certified reference material of human hair (GBW07601) was analyzed and the determined values were in good agreement with the certified values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号