首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Diastereomeric Aurochromes: Their Synthesis, Analysis and Chiroptical Properties (all-E)-Aurochrome (5,8:5′,8′-diepoxy-5,8,5′,8′-tetrahydro-β,β-carotene; 1 ) has two pairs of constitutionally identical chiral centres and, therefore, is expected to exist in four pairs of enantiomers and two meso-forms. Using starting materials with well-defined configuration, we performed the syntheses of the following pure aurochromes: (5R,8R,5′R,8′R)-aurochrome ( 2 ) and its racemate, Meso-(5R,8R,5′S,8′S)-aurochrome ( 3 ), (5 R,8 S,5′ R,8′ S)-aurochrome ( 4 ) and its racemate, meso-(5R,8S,5′S,8′R)-aurochrome ( 5 ), (5R,8R,5′R,8′S)-aurochrome ( 6 ) and its racemate. The (5RS,8RS,5′SR,8′RS)-aurochrome ( 7 ) was detected chromatographically, using a HPLC system that allows clean separation of the four racemic- (or optically active) and the two meso-aurochromes. The optically active autochromes 2 and 4 exhibit non-conservative CD spectra with strong Cotton effects of opposite but not mirror-like tracings. Solutions of aurochromes in CHCl3, in the presence of HCl, undergo epimerization at C(8). Those epimers with CH3 trans to C(9) slightly predominate under equilibrium conditions. Deprotonation of the phosphonate (±)- 14 with strong base causes isomerization at the terminal oxirane into a dihydrofuran. This reaction allowed convenient syntheses of the diastereoisomeric aurochromes (±)- 2, 3 , (±)- 4, 5 , (±)- 6 , and (±)- 7 and of (5RS, 8RS)- and (5RS, 8SR)-12′-apo-aurochrome-12′-als ( 21 and 22 , respectively).  相似文献   

2.
The structures of the main carotenoid pigments from the mutant 1-207 of Rhizobium lupini were elucidated by spectroscopic techniques (UV./VIS., CD., 270 MHz 1H-NMR., and MS.). Ten carotenoids were identified, namely β,β-carotene ( 1 ), β,β-caroten-4-one (echinenone, 2 ), β,β-carotene-4,4′-dione (canthaxanthin, 3 ), (3S)-3-hydroxy-β,β-caroten-4-one ((3S)-3-hydroxyechinenone, 4 ), (2R, 3R)-β,β-carotene-2,3-diol ( 5 ), (3S)-3-hydroxy-β,β-carotene-4,4′-dione ((3S)-adonirubin, 6 ), (2R, 3S)-2,3-dihydroxy-β,β-caroten-4-one ( 7 ), (2R, 3S)-2,3-dihydroxy-β,β-caroten-4,4′-dione ( 8 ), (2R, 3S, 2′R, 3′R)-2,3,2′,3′-tetrahydroxy-β,β-caroten-4-one ( 9 ) and the corresponding (2R, 3S, 2′R, 3′S)-4,4′-dione ( 10 ). Structures 5, 7, 8 and 10 have not been reported before. From the observed carotenoid pattern it is concluded that in this mutant the oxidation to 4-oxo compounds is favoured compared to the hydroxylation at C(3) and C(2).  相似文献   

3.
Stereoisomeric Sinensiaxanthins and Sinensiachromes: Separation and Absolute Configuration The so-called sinensiaxanthins and sinensiachromes, important apocarotenols from various fruits, have been separated into 2 and 4 stereoisomers, respectively, and their absolute configurations have been determined: (3S,5R,6S)-5,6-epoxy-5,6-dihydro-10′-apo-β-carotene-3,10′-diol ( 2 ), its (9Z)-stereoisomer 7, the (8R)- and (8S)-epimers of (3S, 5R)-5,8-epoxy-5,8-dihydro- 10′ -apo-β-carotene-3, 10′-diol ( 4 and 5 ), and their (9Z)-stereoisomers 3 and probably 6. Thus, sinensiaxanthins are cleavage products from (Z/E)-isomeric antheraxanthins or violaxanthins (scission at C(9′)–C(10′)) and sinensiachromes analogously from mutatoxanthins or auroxanthins.  相似文献   

4.
( all-E)-12′-Apozeanthinol, Persicaxanthine, and Persicachromes Reexamination of the so-called ‘persicaxanthins’ and ‘persicachromes’, the fluorescent and polar C25-apocarotenols from the flesh of cling peaches, led to the identification of the following components: (3R)-12′-apo-β-carotene-3,12′-diol ( 3 ), (3S,5R,8R, all-E)- and (3S,5R,8S,all-E)-5,8-epoxy-5,8-dihydro-12′-apo-β-carotene-3,12′-diols (4 and 5, resp.), (3S,5R,6S,all-E)-5,6-epoxy-5,6-dihydro-l2′-apo-β-carotene-3,12′-diol =persicaxanthin; ( 6 ), (3S,5R,6S,9Z,13′Z)-5,6-dihydro-12′apo-β-carotene-3,12′-diol ( 7 ; probable structure), (3S,5R,6S,15Z)-5,6-epoxy-5,6-dihydro-12′-apo-β-carotene-3,12′-diol ( 8 ), and (3S,5R,6S,13Z)-5,6-epoxy-5,6-dihydro-12′-apo-β-carotene-3,12′-diol ( 9 ). The (Z)-isomers 7 – 9 are very labile and, after HPLC separation, isomerized predominantly to the (all-E)-isomer 6 .  相似文献   

5.
Synthesis and Chirality of (5R, 6R)-5,6-Dihydro-β, ψ-carotene-5,6-diol, (5R, 6R, 6′R)-5,6-Dihydro-β, ε-carotene-5,6-diol, (5S, 6R)-5,6-Epoxy-5,6-dihydro-β,ψ-carotene and (5S, 6R, 6′R)-5,6-Epoxy-5,6-dihydro-β,ε-carotene Wittig-condensation of optically active azafrinal ( 1 ) with the phosphoranes 3 and 6 derived from all-(E)-ψ-ionol ( 2 ) and (+)-(R)-α-ionol ( 5 ) leads to the crystalline and optically active carotenoid diols 4 and 7 , respectively. The latter behave much more like carotene hydrocarbons despite the presence of two hydroxylfunctions. Conversion to the optically active epoxides 8 and 9 , respectively, is smoothly achieved by reaction with the sulfurane reagent of Martin [3]. These syntheses establish the absolute configurations of the title compounds since that of azafrin is known [2].  相似文献   

6.
Separation and Absolute Configuration of the C(8)-Epimeric (app-E)-Neochromes (Trollichromes) and -Dinochromes The C(8′)-epimers of (all-E)-neochrome were separated by HPLC and carefully characterized. The faster eluted isomer, m.p. 197.8–198.3°, is shown to have structure 3 ((3S,5R,6R,3′S,5′R,8′R)-5′,8′-epoxy-6,7-dodehydro-5,6,5′,8′-tetrahydro-β,β-carotene-3,5,3′-triol). To the other isomer, m.p. 195-195.5°, we assign structure 6 , ((3S,5R,6R,3′S,5′R,8′R)-5′,8′-epoxy-6,7-didehydro-5,6,5′,8′-tetrahydro-β,β-carotene-3,5,3′-triol). The already known epimeric dinochromes (= 3-O-acetylneochromes) can now be formulated as 4 and 5 , (‘epimer 1’ and its trimethylsilyl ether) and 7 and 8 , (‘epimer 2’ and its trimethylsilyl ether), respectively.  相似文献   

7.
(1S,2R,6R,7R)-4-Phenyl-3,10-dioxa-5-azatricyclo[5.2.1.02,6]dec-4-en-9-one ((+)- 5 ) obtained in 6 steps from the Diels-Alder adduct of furan to 1-cyanovinyl (1S)-camphanate ((+)- 3 ) was reduced to the corresponding endo-alcohol (?)- 6 the treatment of which with HBr/AcOH provided (?)-(3aS,4S,6R,7S,7aR)-4β-bromo-3aβ,4,5,6,7,7aβ-hexahydro-2-phenyl-1,3-benzoxazole-6β,7α-diyl diacetate ((?)- 17 ). Elimination of HBr with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and acidic hydrolysis furnished (?)-(1R,2S,3R,4R)-4-aminocyclohex-5-ene-1,2,3-triol ( ? (?)-conduramine C1;(?)- 1 ).  相似文献   

8.
(+)-(1S, 3S, 6S, 8S)-and (?)-(1R, 3R, 6R, 8R)-4, 9-Twistadiene: Synthesis and Absolute Configuration A synthesis and the determination of the absolute configuration of (+)-(1S, 3S, 6S, 8S)- and (?)-(1R, 3R, 6R, 8R)-4, 9-twistadiene ((+)- and (?)- 4 , respectively) is described. Their chiroptical properties are compared with those of saturated twistane ((+)- and (?)- 5 ) as well as with those of the unsaturated and saturated 2, 7-dioxatwistane analogs (+)- and (?)- 9 , and (+)- and (?)- 10 , respectively, which also are compounds of known absolute configurations.  相似文献   

9.
Cucurbitaxanthin A (= (3S,5R,6R,3′R)-3,6-epoxy-5,6-dihydro-β,β- carotene-5,3′-diol; 5 ), cucurbitaxanthin B (= (3S,5R,6R,3′S,5′R,6′S)-3,6,5′, 6′-diepoxy-5,6,5′,6′-tetrahydro-β,β-carotene-5,3′-diol; 6 ), the epimeric cucurbitachromes 1 and 2 (= (3S,5R,6R,3′S,5′R,8′S)- and (3S,5R,6R,3′S,5′R,8′R)-3,6,5′, 8′-diepoxy-5,6,5′,6′-tetrahydro-β,β-carotene-5,3′-diol, resp.; 9/10 ), cycloviolaxanthin (= (3S,5R,6R,3′S,5′R,6′R)-3,6,3′, 6′-diepoxy-5,6,5′,6′-tetrahydro-β,κs-carotene-5,5′-diol; 8 ), and capsanthin 3,6-epoxide (= (3S,5R,6R,3′S,5′R)-3,6-epoxy-5,6-dihydro ?5,3′-dihydroxy-β,κ-caroten-6′-one; 7 ) were isolated from red spice paprika (Capsicum annuum var. longum) and characterized by their 1H- and 13C-NMR, mass, and CD spectra.  相似文献   

10.
Absolute Configuration of Antheraxanthin, ‘cis-Aritheraxanthin’ and of the Stereoisomeric Mutatdxanthins The assignement of structure 2 to antheraxanthin (all-E)-(3 S, 5 R, 6 S, 3′ R)-5,6-epoxy-5,6-dihydro-β,β-carotene-3,3′-diol and of 1 to ‘cis-antheraxanthin’ (9Z)-(3 S, 5 R, 6 S, 3′ R)-5,6-epoxy-5,6-dihydro-β,β-carotene-3,3′-diol is based on chemical correlation with (3 R, 3′ R)-zeaxanthin and extensive 1H-NMR. measurements at 400 MHz. ‘Semisynthetic antheraxanthin’ ( = ‘antheraxanthin B’) has structure 6 . For the first time the so-called ‘mutatoxanthin’, a known rearrangement product of either 1 or 2 , has been separated into pure and crystalline C(8)-epimers (epimer A of m.p. 213° and epimer B of m.p. 159°). Their structures were assigned by spectroscopical and chiroptical correlations with flavoxanthin and chrysanthemaxanthin. Epimer A is (3 S, 5 R, 8 S, 3′ R)-5,8-epoxy-5,8-dihydro-β,β-carotene-3,3′-diol ( 4 ; = (8 S)mutatoxanthin) and epimer B is (3 S, 5 R, 8 R, 3′ R)-5,8-epoxy-5,8-dihydro-β,β-carotene-3,3′-diol ( 3 ; = (8 R)-mutatoxanthin). The carotenoids 1 – 4 have a widespread occurrence in plants. We also describe their separation by HPLC. techniques. CD. spectra measured at room temperature and at ? 180° are presented for 1 – 4 and 6 . Antheraxanthin ( 2 ) and (9Z)-antheraxanthin ( 1 ) exhibit a typical conservative CD. The CD. Spectra also allow an easy differentiation of 6 from its epimer 2 . The isomeric (9Z)-antheraxanthin ( 1 ) shows the expected inversion of the CD. curve in the UV. range. The CD. spectra of the epimeric mutatoxanthins 3 and 4 (β end group) are dissimilar to those of flavoxanthin/chrysanthemaxanthin (ε end group). They allow an easy differentiation of the C (8)-epimers.  相似文献   

11.
β-Cryptoxanthin ( 1 ) was acetylated and then epoxidized with monoperoxyphthalic acid. After hydrolysis, repeated chromatography, and crystallization, (3S,5R,6S)-5,6-epoxy-β-cryptoxanthin ( 3 ), (3S,5S,6R)-5,6-epoxy-β-cryptoxanthin ( 4 ), (3R,5′R,6′R)-5′,6′-epoxy-β-cryptoxanthin ( 5 ), (3S,5R,6S,5′R,6′S)-5,6:5′,6′-diepoxy-β-cryp-toxanthin ( 6 ), and (3S,5S,6R,5′S,6′R)-5,6:5′,6′-diepoxy-β-cryptoxanthin ( 7 ) were isolated as main products and characterized by their UV/VIS, CD, 1H- and 13C-NMR, and mass spectra. The comparison of the carotenoid isolated from yellow, tomato-shaped paprika (Capsicum annuum var. lycopersiciforme flavum) with 3–5 strongly supports the structure of 3 for the natural product.  相似文献   

12.
The synthesis and catalytic properties of a new type of enantioselective phase-transfer catalysts, incorporating both the quinuclidinemethanol fragment of Cinchona alkaloids and a 1,1′-binaphthalene moiety, are described. Catalyst (+)-(aS,3R,4S,8R,9S)- 4 with the quinuclidine fragment attached to C(7′) in the major groove of the 1,1′-binaphthalene residue was predicted by computer modeling to be an efficient enantioselective catalyst for the unsymmetric alkylation of 6,7-dichloro-5-methoxy-2-phenylindanone ( 1 ; Scheme 1, Fig. 1). Its synthesis involved the selective oxidative cross-coupling of two differently substituted naphthalen-2-ols to afford the asymmetrically substituted 1,1′-binaphthalene derivative (±)- 17 in high yield (Scheme 3). Chromatographic optical resolution via formation of diastereoisomeric camphorsulfonyl esters and functional-group manipulation gave access to the 7-bromo-1,1′-binaphthalene derivative (−)-(aS)- 11 (Scheme 4). Nucleophilic addition of lithiated (−)-(aS)- 11 to the quinuclidine Weinreb amide (+)-(3R,4S,8R)- 8 afforded the two ketones (aS,3R,4S,8R)- 27 and (aS,3R,4S,8S)- 28 as an inseparable mixture of diastereoisomers (Scheme 6). Stereoselective reduction of this mixture with DIBAL-H (diisobutylaluminum hydride; preferred formation of the C(8)−C(9) erythro-pair of diastereoisomers with 18% de) or with NaBH4 (preferred formation of the threo-pair of diastereoisomers with 50% de) afforded the four separable diastereoisomers (+)-(aS,3R,4S,8S,9S)- 29 , (+)-(aS,3R,4S,8R,9R)- 30 , (−)-(aS,3R,4S,8S,9R)- 31 , and (+)-(aS,3R,4S,8R,9S)- 32 (Scheme 6). A detailed conformational analysis, combining 1H-NMR spectroscopy and molecular-mechanics computations, revealed that the four diastereoisomers displayed distinctly different conformational preferences (Figs. 2 and 3). These novel Cinchona-alkaloid analogs were quaternized to give (+)-(aS,3R,4S,8R,9S)- 4 , (+)-(aS,3R,4S,8S,9S)- 5 , (+)-(aS,3R,4S,8R,9R)- 6 , and (−)-(aS,3R,4S,8S,9R)- 7 (Scheme 7) which were tested as phase-transfer agents in the asymmetric allylation of phenylindanone 1 . Without any optimization work, (+)-(aS,3R,4S,8R,9S)- 4 was found to catalyze the allylation of 1 yielding the predicted enantiomer (+)-(S)- 3b in 32% ee. The three diastereoisomeric catalysts (+)- 5 , (+)- 6 , and (−)- 7 gave access to lower enantioselectivities (6 to 22% ee's), which could be rationalized by computer modeling (Fig. 4).  相似文献   

13.
(Z)-1,6-Anhydro-3-deoxy-4-methylsulfanyl-3-[(methylsulfanyl)methylene]-β-D-erythro-hexopyranos-2-ulose (1) reacted with diethyl malonate, 1,3-diketones, N-aryl-3-oxobutyramides and dialkyl 3-oxoglutarate, respectively, in the presence of potassium carbonate and crown ether to yield diethyl 2-(1,6-anhydro-4-methylsulfanyl—D-arabino-hex-2-ulopyranos-3-ylmethylene) malonate (2), 1-{(1R,2S,8S,9R)-2-hydroxy-4-methyl-8-methylthio-3,11,12- trioxatricyclo7.2.1.02,7dodeca-4,6-dien-5-yl} ethanone (3), (1R,2S,12S,13R)-2-hydroxy-12-methylthio-3,15,16-trioxatetracyclo[11.2.1. 02,11. 04,9] hexadeca- 4(9),10-dien-8-one (4), (1R,8S,9R)-5-acetyl-3-aryl-8-methylthio-11,12-dioxa- 3-azatricyclo-[7.2.1.02,7]dodeca-2(7),5-dien-4-ones (5,6) and dialkyl (1R,8S,-9R)-4-hydroxy-8-methylthio-11,12-dioxatricyclo[7.2.1.02,7]dodeca-2(7),3,5-triene-3,5-dicarboxylates (7,8), respectively.  相似文献   

14.
Syntheses of Optically Active Carotenoids with 3,5,6-Trihydroxy-5,6-dihydro β-End Groups For the specification of the relative and absolute configuration in carotenoids with 3,5,6-trihydroxy-5-6-dihydro β-end groups, several ionone derivatives and carotenoids bearing this end group were synthesized. Acid-catalyzed hydrolysis of (3S,5S,6R)– acetoxy-5,6-epoxy-5,6-dihydro-β-ionone ( 7 ) and of its (3S,5R,6S)-isomer ( 13 ) gave the diols 8 and 15 , respectively, with exclusive inversion at c(5) (Scheme 2). Compared to this, mild acid hydrolysis of caroten-5-6-expoxides in the presence of H2O resulted in the formation of 5,6-diols with either inversion or retention of the configuration at C(6) (Scheme 3). Spectroscopic data allowed us to distinguish the relative configurations (3R*,5S*,6S*) (see A ), (3R*,5R*,6R*) (see B ), (3R*,5S*,6R*) (see C ), and (3R*,5R*,6S*) (see D ), of the 3,5,6-trihydroxy-5-6-dihydro β-end groups. Syntheses of the optically active carotene-hexols 20 and 21 and comparison with published data led to a revision of the structure of mectrazanthin (now formulated as 20 ), heteroxanthin (now formulated as 28 ), and further carotenoids with 3,5,6-trihydroxy end groups.  相似文献   

15.
Stereochemical Correlations between (2R,4′R,8′R)-α-Tocopherol, (25S,26)-Dihydroxycholecalciferol, (–)-(1S,5R)-Frontalin and (–)-(R)-Linalol The optically active C5- and C4-building units 1 and 2 with their hydroxy group at a asymmetric C-atom were transformed to (–)-(1S,5R)-Frontalin ( 7 ) and (–)-(3R)-Linalol ( 8 ) respectively; 1 and 2 had been used earlier in the preparation of the chroman part of (2R,4′R,8′R)-α-Tocopherol ( 6a , vitamin E), and for introduction of the side chain in (25S,26)-Dihydroxycholecalciferol ((25S)- 4 ), a natural metabolite of Vitamin D3. The stereochemical correlations resulting from these converions fit into a coherent picture with those correlations already known from literature and they confirm our earlier stereochemical assignments. A stereochemical assignment concerning the C(25)-epimers of 25,26-Dihydroxycholecalciferol that was in contrast to our findings and that initiated the conversion of 1 and 2 to 7 resp. 8 for additional stereochemical correlations has been corrected in the meantime by the authors [26].  相似文献   

16.
Stereoselective Syntheses of Substituted Tricarbonyl[tris(methylen)methan]iron(0) Complexes The complexes 3 , 9 , 10 , 22 , and 23 with one, two, and three Me substituents at the tris(methylen)methane moiety have been synthesized from the (acyloxy-1,3-diene)(tricarbonyl)iron(0) complexes 1 , 4 , 5 , 20 , and 21 , respectively, by ionic hydrogenation with BF3 and Et3SiH at ?78° in CH2C12. These reductions are completely stereoselective, and their course can be predicted by assuming a dominant stereoelectronic control of the reaction. Formation of the carbocationic intermediates 11 from 4 and 12 from 5 , e.g., takes place only if the dissociating O? C bond is antiperiplanar to the donor C(β)? Fe bond. Fast H-transfer then converts the intermediate 11 to 9 and 12 to 10 . The configurations of 17 and 20 can be deduced from the structure of 22 and those of 18 and 21 from that of 23 . An X-ray structure determination of (1R,4S)camphanoate (?)- 13 derived from alcohol (?)- 7 confirms the configuration of 5 deduced above, The structures of the complexes 9 and 10 , 22 and 23 were determined by their unique NMR spectra. The diastereoisomeric complexes 6 and 7 have been synthesized from aldehyde 8 with MeMgI, the diastereoisomers 17 and 18 analogously from 16 or from methyl ketone 19 by reduction with LiAlH4. Optically active starting materials (+)- 1 , (?)- 13 , (+)- 20 , and (+)- 21 gave, by ionic hydrogenation, the complexes (?)-(3R)- 3 , (+)-(2S,4S)- 10 , (?)-(R,R, S)- 22 , and (?)-(R,R,R)- 23 respectively, with known absolute configurations.  相似文献   

17.
Biotransformation of (±)‐threo‐7,8‐dihydroxy(7,8‐2H2)tetradecanoic acids (threo‐(7,8‐2H2)‐ 3 ) in Saccharomyces cerevisiae afforded 5,6‐dihydroxy(5,6‐2H2)dodecanoic acids (threo‐(5,6‐2H2)‐ 4 ), which were converted to (5S,6S)‐6‐hydroxy(5,6‐2H2)dodecano‐5‐lactone ((5S,6S)‐(5,6‐2H2)‐ 7 ) with 80% e.e. and (5S,6S)‐5‐hydroxy(5,6‐2H2)dodecano‐6‐lactone ((5S,6S)‐5,6‐2H2)‐ 8 ). Further β‐oxidation of threo‐(5,6‐2H2)‐ 4 yielded 3,4‐dihydroxy(3,4‐2H2)decanoic acids (threo‐(3,4‐2H2)‐ 5 ), which were converted to (3R,4R)‐3‐hydroxy(3,4‐2H2)decano‐4‐lactone ((3R,4R)‐ 9 ) with 44% e.e. and converted to 2H‐labeled decano‐4‐lactones ((4R)‐(3‐2H1)‐ and (4R)‐(2,3‐2H2)‐ 6 ) with 96% e.e. These results were confirmed by experiments in which (±)‐threo‐3,4‐dihydroxy(3,4‐2H2)decanoic acids (threo‐(3,4‐2H2)‐ 5 ) were incubated with yeast. From incubations of methyl (5S,6S)‐ and (5R,6R)‐5,6‐dihydroxy(5,6‐2H2)dodecanoates ((5S,6S)‐ and (5R,6R)‐(5,6‐2H2)‐ 4a ), the (5S,6S)‐enantiomer was identified as the precursor of (4R)‐(3‐2H1)‐ and (2,3‐2H2)‐ 6 ). Therefore, (4R)‐ 6 is synthesized from (3S,4S)‐ 5 by an oxidation/keto acid reduction pathway involving hydrogen transfer from C(4) to C(2). In an analogous experiment, methyl (9S,10S)‐9,10‐dihydroxyoctadecanoate ((9S,10S)‐ 10a ) was metabolized to (3S,4S)‐3,4‐dihydroxydodecanoic acid ((3S,4S)‐ 15 ) and converted to (4R)‐dodecano‐4‐lactone ((4R)‐ 18 ).  相似文献   

18.
Epoxidation of Cucurbitaxanthin A: Preparation of Cucurbitaxanthin B and of Its 5′,6′-Epimer Cucurbitaxanthin A (= (3S,5R,6R,3′S)-3,6-epoxy-5,6-dihydro-β,β-carotene-5,3′-diol; 1 ) isolated from red pepper (Capsicum annuum var. longum nigrum) was trimethylsiylated and then epoxidized with monoperphthalic acid. After deprotection and chromatographic separation, cucurbitaxanthin B (= (3S,5R,6R, 3′S,5′R,6′S)-3,6:5′,6′-diepoxy-5,6,5′,6′-tetrahydro-β,β-carotene-5,3′-diol; 2 ) and 5′,6′-diepicucurbitaxanthin B (= (3S,5R,6R, 3′S,5′S,6′R)-3,6:5′,6′-diepoxy-5,6,5′,6′-tetrahydro-β,β-carotene-5,3′-diol; 5 ) were obtained and carefully characterized. They show mirror-like CD spectra and, therefore, emphasize the importance of the torsion angle of C(6)–C(7) on the electronic interaction between the polyene chain and the chiral end group.  相似文献   

19.
Catalytic hydrogenation of the Δ3-unsaturated (9R,10 R)- and (9S,10 S)-epoxyenol lactones 3a, b. , and 4a, b. , respectively, affords, in addition to the expected saturated epoxylactones 5a, b and 7a, b , also open-chain products, i.e. the diastereoisomeric (9R,10R)- and (9S,10S)-9,10-expoxy-8-oxo-4,5-secosteroklastan-5-oic acids 6a, b. and 8a, b. Alkaline hydrolysis of the lactone ring of compounds 5 and 7 and subsequent acetylation of the corresponding hydroxy derivatives give as the major products the open-chain, diasteroisomeric (9R,10R)- and (9S,10S)-4-acetoxy-9,10-epoxy-methyl esters 9a, b and 11a, b , respectively, and, but only in the androstane series, the tetrahydropyran derivatives 10a and 12a , as the minor components.  相似文献   

20.
Nine new sesquiterpenes, i.e., dendronobilins A–I ( 1 – 9 ), with copacamphane‐type ( 1 ), picrotoxane‐type ( 2 – 6 ), muurolene‐type ( 7 ), alloaromadendrane‐type ( 8 ), and cyclocopacamphane‐type ( 9 ) skeletons, were isolated from the 60% EtOH extract of the stems of Dendrobium nobile. Their structures were established as (1R,2R,4S,5S,6S,8S,9R)‐2,8‐dihydroxycopacamphan‐15‐one ( 1 ), (2β,3β,4β,5β)‐2,4,11‐trihydroxypicrotoxano‐3(15)‐lactone ( 2 ), (2β,3β,5β,9α,11β)‐2,11‐epoxy‐9,11,13‐trihydroxypicrotoxano‐3(15)‐lactone ( 3 ), (2β,3β,5β,12R*)‐2,11,13‐trihydroxypicrotoxano‐3(15)‐lactone ( 4 ), (2β,3β,5β,12S*)‐2,11,13‐trihydroxypicrotoxano‐3(15)‐lactone ( 5 ), (2β,3β,5β,9α)‐9,10‐cyclo‐2,11,13‐trihydroxypicrotoxano‐3(15)‐lactone ( 6 ), (9β,10α)‐muurol‐4‐ene‐9,10,11‐triol ( 7 ), (10α)‐alloaromadendrane‐10,12,14‐triol ( 8 ), and (5β)‐cyclocopacamphane‐5,12,15‐triol ( 9 ) on the basis of spectroscopic analysis. The absolute configuration of compound 1 was tentatively assigned as (1R,2R,4S,5S,6S,8S,9R) according to its CD spectrum and the octant rule. Compounds 1 and 4 – 9 were inactive in our preliminary in vitro immunomodulatory bioassay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号