首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three β-chitin structures [anhydrous, di-hydrate, mono-ethylenediamine (EDA)] recently determined by synchrotron X-ray and neutron fiber diffraction were reviewed from the viewpoint of molecular interactions. Both water and EDA molecules interact with the chitin chains through multiple hydrogen bonds. When water complexes with chitin, the hydrogen bonding pattern rearranges with the replacement of an intrachain chitin hydrogen bond by a stronger hydrogen bond between chitin and water, with an associated reduction in the degrees of freedom; the water oxygen is a much stronger acceptor than the O5 ring atom. The behavior of hydrogen exchange by deuterium supports this interpretation. EDA-molecules change the conformation of hydroxymethyl group from gg to gt, accompanied by changes in hydrogen bonds due to the strong accepting ability of the EDA nitrogen atoms. Some important interactions are in common with experimental crystallographic results of cellulosic crystals and of molecular dynamics studies. These new insights into solid–solvent interactions are valuable in understanding molecular interactions in other polysaccharides-solvents system in solution or on surface.  相似文献   

2.
π- and σ-holes are nonnuclear molecular regions of positive electric potential, which make non-covalent interactions with negative sites, for example, lone pairs of molecules containing nitrogen or oxygen, the so called π- and σ-hole bonds. We investigate these bonds locally using a probe programmed as a virtual molecule. Unlike the hydrogen bond, electric fields are detected having strengths that are different from the sum of the separated parts, meaning that molecular electrostatic potential surfaces analysis of the different parts are not enough to analyze the bonds. Based on an application of the Hellmann-Feynman theorem, which states that intermolecular bonds are fully described by Coulombian interactions (electrostatic plus polarization), we connect the electric field strength with the bond strength measured in experiments, so that it can be considered as a quantifier for the bonds.  相似文献   

3.
The identification of trigger bonds, bonds that break to initiate explosive decomposition, using computational methods could help direct the development of novel, “green” and efficient high energy density materials (HEDMs). Comparing bond densities in energetic materials to reference molecules using Wiberg bond indices (WBIs) provides a relative scale for bond activation (%ΔWBIs) to assign trigger bonds in a set of 63 nitroaromatic conventional energetic molecules. Intramolecular hydrogen bonding interactions enhance contributions of resonance structures that strengthen, or deactivate, the C NO2 trigger bonds and reduce the sensitivity of nitroaniline‐based HEDMs. In contrast, unidirectional hydrogen bonding in nitrophenols strengthens the bond to the hydrogen bond acceptor, but the phenol lone pairs repel and activate an adjacent nitro group. Steric effects, electron withdrawing groups and greater nitro dihedral angles also activate the C NO2 trigger bonds. %ΔWBIs indicate that nitro groups within an energetic molecule are not all necessarily equally activated to contribute to initiation. %ΔWBIs generally correlate well with impact sensitivity, especially for HEDMs with intramolecular hydrogen bonding, and are a better measure of trigger bond strength than bond dissociation energies (BDEs). However, the method is less effective for HEDMs with significant secondary effects in the solid state. Assignment of trigger bonds using %ΔWBIs could contribute to understanding the effect of intramolecular interactions on energetic properties. © 2018 Wiley Periodicals, Inc.  相似文献   

4.
Hydrogen bonds (H bonds) play a major role in defining the structure and properties of many substances, as well as phenomena and processes. Traditional H bonds are ubiquitous in nature, yet the demonstration of weak H bonds that occur between a highly polarized C?H group and an electron‐rich oxygen atom, has proven elusive. Detailed here are linear and nonlinear IR spectroscopy experiments that reveal the presence of H bonds between the chloroform C?H group and an amide carbonyl oxygen atom in solution at room temperature. Evidence is provided for an amide solvation shell featuring two clearly distinguishable chloroform arrangements that undergo chemical exchange with a time scale of about 2 ps. Furthermore, the enthalpy of breaking the hydrogen bond is found to be 6–20 kJ mol?1. Ab‐initio computations support the findings of two distinct solvation shells formed by three chloroform molecules, where one thermally undergoes hydrogen‐bond making and breaking.  相似文献   

5.
The halogen bond, similar to the hydrogen bond, is an important noncovalent interaction and plays important roles in diverse chemistry‐related fields. Herein, bromine‐ and iodine‐based halogen‐bonding interactions between two benzene derivatives (C6F5Br and C6F5I) and dimethyl sulfoxide (DMSO) are investigated by using IR and NMR spectroscopy and ab initio calculations. The results are compared with those of interactions between C6F5Cl/C6F5H and DMSO. First, the interaction energy of the hydrogen bond is stronger than those of bromine‐ and chlorine‐based halogen bonds, but weaker than iodine‐based halogen bond. Second, attractive energies depend on 1/rn, in which n is between three and four for both hydrogen and halogen bonds, whereas all repulsive energies are found to depend on 1/r8.5. Third, the directionality of halogen bonds is greater than that of the hydrogen bond. The bromine‐ and iodine‐based halogen bonds are strict in this regard and the chlorine‐based halogen bond only slightly deviates from 180°. The directional order is iodine‐based halogen bond>bromine‐based halogen bond>chlorine‐based halogen bond>hydrogen bond. Fourth, upon the formation of hydrogen and halogen bonds, charge transfers from DMSO to the hydrogen‐ and halogen‐bond donors. The CH3 group contributes positively to stabilization of the complexes.  相似文献   

6.
Lithium bonds are analogous to hydrogen bonds and are therefore expected to exhibit similar characteristics and functions. Additionally, the metallic nature and large atomic radius of Li bestow the Li bond with special features. As one of the most important applications of the element, Li batteries afford emerging opportunities for the exploration of Li bond chemistry. Herein, the historical development and concept of the Li bond are reviewed, in addition to the application of Li bonds in Li batteries. In this way, a comprehensive understanding of the Li bond in Li batteries and an outlook on its future developments is presented.  相似文献   

7.
A hydrogen bond is an interaction wherein a hydrogen atom is attracted to two atoms, rather than just one, and acts like a bridge between them. The strength of this attraction increases with the increasing electronegativity of either of the atoms, and in the classical view, all hydrogen bonds are highly electrostatic and sometimes even partly covalent. Gradually, the concept of a hydrogen bond has become more relaxed to include weaker and more dispersive interactions, provided some electrostatic character remains. A great variety of very strong, strong, moderately strong, weak, and very weak hydrogen bonds are observed in practice. Weak hydrogen bonds are now invoked in several matters in structural chemistry and biology. While strong hydrogen bonds are easily covered by all existing definitions of the phenomenon, the weaker ones may pose a challenge with regard to nomenclature and definitions. Recently, a recommendation has been made to the International Union of Pure and Applied Chemistry (IUPAC) suggesting an updated definition of the term hydrogen bond. This definition will be discussed in greater detail.  相似文献   

8.
It is known that strong hydrogen‐bonding interactions play an important role in many chemical and biological systems. However, weak or very weak hydrogen bonds, which are often difficult to detect and characterize, may also be relevant in many recognition and reaction processes. Fluorine serving as a hydrogen‐bond acceptor has been the subject of many controversial discussions and there are different opinions about it. It now appears that there is compelling experimental evidence for the involvement of fluorine in weak intramolecular or intermolecular hydrogen bonds. Using established NMR methods, we have previously characterized and measured the strengths of intermolecular hydrogen‐bond complexes involving the fluorine moieties CH2F, CHF2, and CF3, and have compared them with the well‐known hydrogen‐bond complex formed between acetophenone and the strong hydrogen‐bond donor p‐fluorophenol. We now report evidence for the formation of hydrogen bonds involving fluorine with significantly weaker donors, namely 5‐fluoroindole and water. A simple NMR method is proposed for the simultaneous measurement of the strengths of hydrogen bonds between an acceptor and a donor or water. Important implications of these results for enzymatic/chemical reactions involving fluorine, for chemical and physical properties, and for ligand/protein 19F NMR screening are analyzed through experiments and theoretical simulations.  相似文献   

9.
Much of modern chemistry is concerned with the properties and dynamics of chemical bonds. Although they have been described variously, the most familiar representation is that of a link connecting two atoms. However, no one has yet developed a scheme by which to partition a molecule into bond volumes with well‐defined properties. As a consequence, the chemical bond is left as nothing more than a heuristic devise. Here, we show molecules can be partitioned into bond‐bundles–volumes that share many of the properties associated with the conceptual bond. This partitioning follows naturally through an extension of Baders topological theory of molecular structure. Surprisingly, it also bounds regions of space containing nonbonding or lone‐pair electrons and leads to bond orders consistent with those expected from theories of directed valance. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

10.
In the crystal structure of the title compound, C20H18N2O2S, molecules are linked by bifurcated C—H...O hydrogen‐bond interactions, giving rise to chains whose links are composed of alternating centrosymmetrically disposed pairs of molecules and characterized by R22(10) and R22(20) hydrogen‐bonding motifs. Also, N—H...S hydrogen bonds form infinite zigzag chains along the [010] direction, which exhibit the C(4) motif. Hirshfeld surface and fingerprint plots were used to explore the intermolecular interactions in the crystal structure. This analysis confirms the important role of C—H...O hydrogen bonds in the molecular conformation and in the crystal structure, providing a potentially useful tool for a full understanding of the intermolecular interactions in acylthiourea derivatives.  相似文献   

11.
Hydrogen bonds (H bonds) play a major role in defining the structure and properties of many substances, as well as phenomena and processes. Traditional H bonds are ubiquitous in nature, yet the demonstration of weak H bonds that occur between a highly polarized C−H group and an electron-rich oxygen atom, has proven elusive. Detailed here are linear and nonlinear IR spectroscopy experiments that reveal the presence of H bonds between the chloroform C−H group and an amide carbonyl oxygen atom in solution at room temperature. Evidence is provided for an amide solvation shell featuring two clearly distinguishable chloroform arrangements that undergo chemical exchange with a time scale of about 2 ps. Furthermore, the enthalpy of breaking the hydrogen bond is found to be 6–20 kJ mol−1. Ab-initio computations support the findings of two distinct solvation shells formed by three chloroform molecules, where one thermally undergoes hydrogen-bond making and breaking.  相似文献   

12.
Hydrogen-bonded interactions between local defect structures on broken clay surfaces modeled as molecular clusters and the organic molecules acetic acid, acetate, and N-methylacetamide (NMA) have been investigated. Density functional theory and polarized basis sets have been used for the computation of optimized interaction complexes and formation energies. The activity of the defect structures has been characterized as physical or chemical in terms of the strength of the hydrogen bonds formed. Chemical defects lead to significantly enhanced interactions with stronger hydrogen bonds and larger elongation of OH bonds in comparison to the physical defects. The type of interaction with the defect structure significantly influences the planarity of the model peptide bond in NMA. Both cases, enhancement of the planarity by increase of the CN double bond character and strong deviations from planarity, are observed.  相似文献   

13.
14.
To provide improved understanding of guest–host interactions in clathrate hydrates, we present some correlations between guest chemical structures and observations on the corresponding hydrate properties. From these correlations it is clear that directional interactions such as hydrogen bonding between guest and host are likely, although these have been ignored to greater or lesser degrees because there has been no direct structural evidence for such interactions. For the first time, single‐crystal X‐ray crystallography has been used to detect guest–host hydrogen bonding in structure II (sII) and structure H (sH) clathrate hydrates. The clathrates studied are the tert‐butylamine (tBA) sII clathrate with H2S/Xe help gases and the pinacolone + H2S binary sH clathrate. X‐ray structural analysis shows that the tBA nitrogen atom lies at a distance of 2.64 Å from the closest clathrate hydrate water oxygen atom, whereas the pinacolone oxygen atom is determined to lie at a distance of 2.96 Å from the closest water oxygen atom. These distances are compatible with guest–water hydrogen bonding. Results of molecular dynamics simulations on these systems are consistent with the X‐ray crystallographic observations. The tBA guest shows long‐lived guest–host hydrogen bonding with the nitrogen atom tethered to a water HO group that rotates towards the cage center to face the guest nitrogen atom. Pinacolone forms thermally activated guest–host hydrogen bonds with the lattice water molecules; these have been studied for temperatures in the range of 100–250 K. Guest–host hydrogen bonding leads to the formation of Bjerrum L‐defects in the clathrate water lattice between two adjacent water molecules, and these are implicated in the stabilities of the hydrate lattices, the water dynamics, and the dielectric properties. The reported stable hydrogen‐bonded guest–host structures also tend to blur the longstanding distinction between true clathrates and semiclathrates.  相似文献   

15.
A conformationally chiral zwitterionic molecule forms mutually orthogonal helical superstructures in the crystal. This is achieved through a network of hydrogen bond pathways, and electrostatic interactions in crystals formed with and without water of crystallization. A systematic protocol for the computation of charge distribution on the 'molecule-in-the-crystal' is presented; the computed charges provide an insight into the origin of the intermolecular electrostatic interactions. The coexisting orthogonal helical formations lead to the homochiral assembly, and spontaneous resolution observed in the crystals. This material facilitates an appraisal of the molecular level interactions, which form the basis for the persistent spontaneous resolution of a conformationally chiral molecule in the solid state.  相似文献   

16.
Hyaluronan is an unbranched polysaccharide of repeating disaccharides consisting of d-glucuronic acid and N-acetyl-d-glucosamine. Its strong water-retaining ability and visco-elastic properties have been broadly utilized in medical applications. Hyaluronan is an important constituent of the extracellular matrix whose physiological functions are manifested both as the substance is by itself as well as when it is being linked to various proteins. Compared with other biopolymers, such as nucleic acids and proteins, the structural chemistry of hyaluronan is much less developed. The scarce information about the metrical aspects of its structure shows no unusual features. Its secondary structure is characterized by intramolecular hydrogen bonding that is hard to distinguish from hydrogen bonding involving water molecules when hyaluronan is in aqueous medium. The tertiary structure of hyaluronan is sensitively dependent on its environment. The relative rigidity of the glycosidic bond and the intramolecular hydrogen bonds would tend to restrict rotational freedom and thus conformational variability. This, however, seems to be overwritten by the impact of molecular environment leading to a great variability of tertiary structure. A large number of conformations are possible and may be present as witnessed by their rather small free energy differences. Of the plethora of physical techniques and computational methods, X-ray crystallography and molecular dynamics calculations have proved to be the most fruitful so far. There are untapped possibilities in NMR spectroscopy for structural studies and quantum chemical calculations are also expected to contribute substantially to the structural chemistry of hyaluronan. There are many basic data as well as structural intricacies of hyaluronan that have so far eluded the researchers of its molecular structure. Dedicated to Endre A. Balazs, pioneer in hyaluronan research.  相似文献   

17.
18.
NMR spectroscopic parameters of the proton involved in hydrogen bonding are studied theoretically. The set of molecules includes systems with internal resonance‐assisted hydrogen bonds, internal hydrogen bonds but no resonance stabilization, the acetic acid dimer (AAD), a DNA base pair, and the hydrogen succinate anion (HSA). Ethanol and guanine represent reference molecules without hydrogen bonding. The calculations are based on zero‐point vibrationally averaged molecular structures in order to include anharmonicity effects in the NMR parameters. An analysis of the calculated NMR shielding and J‐coupling is performed in terms of “chemist’s orbitals”, that is, localized molecular orbitals (LMOs) representing lone‐pairs, atomic cores, and bonds. The LMO analysis associates some of the strong de‐shielding of the protons in resonance‐assisted hydrogen bonds with delocalization involving the π‐backbone. Resonance is also shown to be an important factor causing de‐shielding of the OH protons for AAD and HSA, but not for the DNA base pair. Nitromalonamide (NMA) and HSA have particularly strong hydrogen bonds exhibiting signs of covalency in the associated J‐couplings. The analysis results show how NMR spectroscopic parameters that are characteristic for hydrogen bonded protons are influenced by the geometry and degree of covalency of the hydrogen bond as well as intra‐ and intermolecular resonance.  相似文献   

19.
Various hydrogen bond lifetime distribution functions, used to describe the breaking and formation dynamics of these bonds in a computer experiment, are examined and relationships between them are found. The procedures for calculating these functions by the molecular dynamics method are described and the results for water models of 3456 molecules at 310 K are reported. The peak of short-lived spurious H-bonds, which results from short-time violations of hydrogen bonding criteria induced by dynamic intermolecular vibrations of molecules, prevails in the types of distributions most often referred to in the literature. A special distribution that appears to have not been used before is proposed. Along with short-lived bonds, it manifests long-lived ones whose lifetime is determined by the genuine, or random, hydrogen bond breaking rather than by dynamic. A technique to exclude dynamic effects and reveal the genuine H-bond breaking is proposed. This allows the evaluation of the average lifetime of “true” H-bonds that turns out to exceed 3 ps.  相似文献   

20.
The role of hydrogen bonding in the formation or stabilization of liquid crystalline phases has only recently been appreciated. Following the first, wellestablished examples of liquid crystal formation from the dimerization of aromatic carboxylic acids, through hydrogen bonding, several classes of compounds have recently been synthesized, the liquid crystalline behavior of which is also dependent on intermolecular hydrogen bonds between similar or dissimilar molecules. In this review the main classes of compounds exhibiting liquid crystallinity due to hydrogen bonding are presented to show the diversity of organic compounds that can be used as building elements in liquid crystals. The molecules are either of the rigid-rod anisotropic or amphiphilic types such as molecules appropriately functionalized with pyridyl and carboxyl groups, whose interaction leads to the formation of liquid crystals; amphiphilic carbohydrates and amphiphilic and bolaamphiphilic compounds with multiple hydroxyl groups whose dimerization or association is indispensable for the formation of liquid crystals; and certain amphiphilic carboxylic acids with monomeric or polymeric mesogens and amphiphilic-type compounds bearing different moieties, whose interaction may lead to the formation of mesomorphic compounds. Associated with the macroscopic display of liquid crystalline phases is the supramolecular structure, and therefore rather extended discussion of these structures are included in this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号