首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen bonding of the triol 4 in chlorinated solvents was studied by IR (CH2Cl2 and CCl4) and 1H-NMR spectroscopy (CDCl3), and the regioselectivity of the glycosidation of the triol 4 by the diazirine 1 is predicted on the basis of two assumptions: preferred protonation of the intermediate glycosylidene carbene by the OH group involved in the weakest intramolecular H-bond, and attack in the π-plane of the thereby generated oxycarbenium cation either by the reoriented oxy anion, or by a properly oriented vicinal OH group. Glycosidation led to the disaccharides 5–10 (Scheme) which were separated and characterized as their acetates 11–16 , to the lactone azines 17 and to the 2-(benzyloxy)glucal 18 . In agreement with the predictions, glycosidation in non-coordinating solvents gave the 1,2-, 1,3-, and 1,4-linked disaccharides in decreasing relative amounts. Glycosidation in THF proceeded with a lower degree of regioselectivity and led preferentially to the β -D -anomers, except for the minor, 1,4-linked disaccharides, where THF had only a weak influence on stereoselectivity at room temperature and led to a slight increase of the α -D -anomer at ?80°.  相似文献   

2.
Glycosidation by the diazirine 1 , the trichloroacetimidate 4 , and the bromide 5 of the altro-diol 2 , possessing an intramolecular H-bond (HO? C(3) to O? C(1)) in solution, but not in the solid state, proceeds with high and complementary regioselectivity. From 2 and 1 , one obtains mostly the 1,2-linked disaccharides 10 and 11 (β-D > α-D ), together with the 1,3-linked isomers 12 and 13 (α-D > β-D ; 1,2-/1,3-linked products ca. 9:1), the demethylated 1,3-linked disaccharides 24–27 , the trisaccharides 19–22 , the lactone azines 23 , and the hydroxyglucal 18 , while 2 reacted with 4 or 5 to yield mostly the 1,3-linked disaccharides (1,2-/1,3-linked products ca. 1:9). The disaccharides were additionally characterized as acetates (→ 14–17, 28–31 ). Yields and stereoselectivity depended upon the donor, stoichiometry, solvent, temperature, and concentration. Glycosidation of the 1,3-linked disaccharides with 1 yielded the trisaccharides 19–22 . Reaction of the β-D -altro-diol 3 with 1 gave the 1,2- and 1,3-linked disaccharides 32/33 and 34/35 in a 1:1 ratio, characterized as the acetates 36–39 , while glycosidation with 5 according to Lemieux proceeded regioselectively (1,2-/1,3-linked products 91:9). The monotosylates 6 and 7 reacted with 1 to yield the anomeric pairs 40/41 , and 42/43 of the tosylated disaccharides; the oxiranes 44 and 45 were not observed.  相似文献   

3.
The H-bonds of the enantiomeric ribosides 4 and 5 and their glycosidation by the diazirine 1 are described. HO–C(2) and HO? C(4) of 4 and 5 form a ‘flip-flop’ H-bonding system, with HO? C(3) acting as a H-bond donor to O? C(2) or O? C(4). HO? C(2) and HO? C(4) of monomeric 4 and 5 are thus the most strongly acidic OH groups. Glycosidation of 4 and 5 by 1 depends on the solvent, the temperature, and the concentration. It yields up to 91% of a mixture of anomeric pairs of the 1,2-, 1,3-, and 1,4-linked disaccharides 8–13 and 20–25 , respectively, which were characterized as their diacetates 14–19 and 26–31 (Scheme). Glycosidation in CH2Cl2 and in dioxane yielded mostly the 1,3-linked disaccharides 10/11 and 22/23 (α/β ca. 4:1), while glycosidation in THF leads mostly to the 1,2- and 1,4-linked regioisomers (β>α). There are small, but significant differences in the glycosidation of 4 and 5 . These, the regio-, and the stereoselectivities are rationalized as the consequences of the stereoelectronic control of both the H-transfer from HO? C(2) or HO? C(4) to the intermediate carbene and of the formation of the glycosidic C? O bond, and of the coordination of the intermediate oxycarbenium ion with THF.  相似文献   

4.
Ginkgolide B ( 1b ) has been glucosylated in THF with the glucosylidene-derived diazirine 2 under thermal or photochemical conditions. Depending on the amount of 2 , we obtained either monoglucosides ( 5 – 8 ), diglucosides ( 13 – 17 ), or triglucosides ( 21 – 23 ). In keeping with earlier results, the use of THF as solvent led mostly to β-D -glucosides. The modest regioselectivity in the formation of the monoglucosides, glucosylated either at O? C(1) or O? C(10), is rationalized on the basis of the relative kinetic acidity of the intra- and intermolecularly H-bonded OH groups of 1b . The tertiary HO? C(3) of the monoglucosides was more readily glucosylated than the secondary HO? C(1) or HO? C(10) (H-bonded). Glucosidation with 3.5 equiv. of 2 led to triglucosides, with the tri-β-D -glucoside 21 (42%) as the major product. Catalytic hydrogenation afforded the free glucosides 9 – 12 , 18 – 20 , and 24 . The di- and triglucosides are readily soluble in H2O. Glucosidation with 2 of the ginkgolide-A-derived tertiary alcohol 25 yielded 93% of the β-D -anomeric glucoside 26 . Similarly, glycosidation of 25 with the lactosylidene-derived diazirine 34 proceeded with a very high stereoselectivity, yielding 92% of the β-D -lactoside 35 , that was deprotected to the H2O soluble acetate 36 .  相似文献   

5.
Thermolysis of the glycosylidene-derived O-benzylated diazirine 1 in the presence of N-phenylmaleimide ( 2 ), acrylonitrile ( 3 ), dimethyl fumarate ( 4 ), or dimethyl maleate ( 5 ) led in good yields to mixtures of the spirocyclopropanes 6 / 7 , 8 – 11 , 12 / 13 , and 12 / 13 / 16 / 17 . The diastereoselectivity depends upon the alkene. The cycloaddition of 1 to 5 is not diastereospecific, in keeping with previous results. Deprotection of 12 , 13 , 16 , and 17 yielded the tetrols 14 , 15 , 18 , and 19 , respectively.  相似文献   

6.
The relation between H-bonding in diequatorial trans-1,2 and axial, equatorial cis-1,2-diols and the regioselectivity of glycosidation by the diazirine 1 was examined. H-Bonds were assigned on the basis of FT-IR and 1H-NMR spectra (Fig. 1). Glycosidation by 1 of the gluco-configurated diequatorial trans-2,3-diols 4–7 yielded the mono-glucosylated products 16/17/20/21 (69–89%); 1,2-/1,3-linked products (37–46:63–54), 24/25/28/29 (60–63%; 1,2-/1,3-linked products 46–51:54–49), 32–35 (69–94%; 1,2-/1,3-linked products 45–52:55–48), and 36/37/40/41 (59–63%; 1,2-/1,3-linked products 52–59:48–41), respectively (Scheme 1, Table 3). The disaccharides derived from 4, 5 , and 7 were characterized as their acetates 18/19/22/23, 26/27/30/31 , and 38/39/42/43 , respectively. Glycosidation of the galacto-configurated diequatorial 2,3-diols 8 and 9 and the manno-configurated diequatorial 3,4-diol 10 by 1 (Scheme 2, Table 3) also proceeded in fair yields to give the disaccharides 44–47 (69–80%;1,2-/1,3-linked products ca. 1:1), 48–51 (51–61%;1,2/-1,3-linked products 54–56:56–54), and 56/57/60/61 (71–80%; 1,3-/1,4-linked products 49–54:51–46), respectively. The 1,3-linked disaccharides 56/57 derived from the diol 10 were characterized as the acetates 58/59 . The regio- and stereoselectivities of the glycosidation by 1 were much better for the α-D -manno-configurated axial, equatorial cis-2,3-diol 11 and the galacto-configurated axial, equatorial cis-3,4-diol 13 (1,2-/1,3-linked disaccharides ca. 3:7 for 11 and 1,3-/1,4-linked disaccharides ca. 4:1 for 13 ; Scheme 3, Table 4). The regio- and stereoselectivity for the β-D -manno-configurated cis-2,3-diol 12 were, however, rather poor (1,2-/1,3-linked products 48:52). The 1,2-linked disaccharides 66/67 derived from 12 were characterized as the acetates 70/71 . Koenigs-Knorr-type glycosidation of the cis-diols 11–13 by 2 or 3 proceeded with a similar regio- and a higher stereoselectivity (α-D > β-D with the donor 2 and α-D < β-D with the donor 3 ) than with 1 , with the exception of 12 which did not react with 2 . The regioselectivity of the glycosidations by 1 agrees fully with the H-bonding scheme of the diols and with the hypothesis that the intermediate carbene is preferentially protonated by the most weakly H-bonded OH group. The regioselectivity of the glycosidation by 2 and by 3 is determined by a higher reactivity of the equatorial OH groups and by H-bonding. Several H-bonded and equilibrating isomers of a given diol may intervene in the glycosidation by 1 , or by 2 and 3 , resulting in the same regioselectivity. The low nucleophilicity of 12 and the low degree of regioselectivity in its reaction with 3 show that stereoelectronic effects may also profoundly influence the nucleophilicity of OH groups.  相似文献   

7.
Phenol, 4-methoxyphenol, 4-nitrophenol, methyl orsellinate ( 1 ), and 2,6-di(tert-butyl)-4-methylphenol (BHT; 2 ) have been glycosylated by thermal reaction (20–60°) with various glycosylidene-derived diazirines. 4-Methoxyphenol reacted with the D-glucosylidene-derived diazirine 3 to give O-glucosides ( 4 and 5 , 69%, 3:1) and C-glucosides ( 6 and 7 , 16%, 1:1). Similarly, phenol yielded O-glucosides ( 10 and 11 , 70%, 4:1) and C-glucosides ( 12 and 13 , 13%, 1:1). 4-Nitrophenol gave only O-glycosides, 3 leading to 14 and 15 (75%, 3:2; Scheme 1), and the D-galactosylidene-derived diazirine 17 to 22 and 23 (52% (from 16 ), 65:35; Scheme 2). The reaction of phenol with 17 yielded 58% (from 16 ) of the O-galactosides 18 and 19 (4:1) and 14% of the C-galactosides 20 and 21 (1:1). From the D-mannosylidene-derived diazirine 25 , we predominantly obtained the α-D-configurated 26 (38 % from 24 ). These results are interpreted by assuming that an intermediate (presumably a glycosylidene carbene) first deprotonates the phenol to generate an ion pair which combines to give O- and - with electron-rich phenolates - also C-glycosides. A competition experiment of 3 with 4-nitro- and 4-methoxyphenol gave the products from the former ( 14 and 15 ) and the latter phenol ( 4-7 ) in almost equal amounts. Differences in the kinetic acidity of OH groups, however, may form the basis of a regioselective glycosidation, as evidenced by the reaction of 3 with methyl orsellinate ( 1 ) yielding exclusively the 4-O-monoglycosylated products 27 and 28 (78%, 85:15), although diglycosidation is possible ( 27 → 31 and 32 ; 67%, 4:3; Scheme 3). Steric hindrance does not affect this type of glycosidation; 3 reacted with the hindered BHT ( 2 ) to afford 33 and 34 (81 %, 4:1). The predominant formation of 1,2-trans -configurated O-aryl glycosides is rationalized by a neighbouring-group participation of the 2-benzyloxy group.  相似文献   

8.
The synthesis of the first glycosylidene-derived 2-acetamido-2-deoxydiazirine 4 from N-acetylglucosamine 6 is described. Thus, 6 was transformed into the 3-O-mesylglucopyranoside 9 by glycosidation with allyl alcohol, benzylidenation, and mesylation (Scheme 2). Solvolysis of 9 gave the allopyranoside 10 which, upon benzylation and glycoside cleavage, yielded the hemiacetals 12 . Using our established method (via the lactone oxime 14 and the diaziridines 16 ), 12 gave the diazirine 4 . Thermolysis of this diazirine in the presence of i-PrOH gave the dihydro-1,3-oxazole 5 (Scheme 1); in the presence of acrylonitrile, the four diastereoisomeric spirocyclopropanes 17–20 and the acetamidoallal 21 were obtained and separated by prep. HPLC (Scheme 3). Assignment of the configuration of 17–20 is based on NOE measurements and on the effect of diamagnetic anisotropy of the CN group. The ratio of the four cyclopropanes, which is in keeping with earlier results, is rationalized.  相似文献   

9.
The regio- and stereoselectivity of the glycosidation of the partially protected mono-alcohols 3 and 7 , the diols 2 and 8 , and the triol 4 by the diazirine 1 have been investigated. Glycosidation of the α-D -diol 2 (Scheme 2) gave regioselectively the 1,3-linked disaccharides 11 and 12 (80%, α-D /β-D 9:1), whereas the analogous reaction with the βD -anomer 8 led to a mixture of the anomeric 1,3- and 1,4-linked disaccharides 13 (12.5%), 14 (16%), 15 (13%), and 16 (20.5%; Table 2). Protonation of the carbene by OH–C(4) of 2 is evidenced by the observation that the α-D -mono-alcohol 3 did not react with 1 under otherwise identical conditions, and that the β-D -alcohol 7 yielded predominantly the β-D -glucoside 18 (52%) besides 14% of 17 . Similarly as for the glycosidation of the diol 2 , the influence of the H-bond of HO? C(4) on the direction of approach of the carbene, the role of HO? C(4) in protonating the carbene, and the stereoelectronic control in the interception of the ensuring oxycarbenium cation are evidenced by the reaction of the triol 4 with 1 (Scheme 3), leading mostly to the α-D -configurated 1,3-linked disaccharide 19 (41%), besides its anomer 20 (16%), and some 4-substituted β-D -glucoside 21 (9%). No 1,6-linked disaccharides could be detected. In agreement with the observed reactivity, the 1H-NMR and IR spectra reveal a strong H-bond between HO? C(3) and the phthalimido group in the α-D -, but not in the β-D -allosides. The different H-bonds in the anomeric phthalimides are in keeping with the results of molecular-mechanics calculations.  相似文献   

10.
11.
In the context of the hypothesis postlating a heterolytic cleavage of a C? N bond during thermolysis of alkoxydiazirines (Scheme 1), we report the preparation of the diazirines 4 , 5 , 7 , and 8 , the kinetic parameters for the thermolysis in MeOH of the diazirines 1 and 4–9 , and the products of their thermolysis in an aprotic environment. The diazirines 4 , 57 , and 8 (Scheme 2–5) were prepared from the known hemiacetals 10 , 19 , 34 (prepared from 31 in an improved way), and 42 according to an established method. The oximes 11 , 20 , 35 , and 43 were obtained from the corresponding hemiacetals as (E/Z)-mixtures; 43 was formed together with the cyclic hydroxylamine 44 . Oxidation of 11 , 35 , and 43 (N-chlorosuccinimide/1,8-diazabicyclo[5.4.0]undec-7-ene (NCS/DBU) or NaIO4) gave good yields of the (Z)-hydroximolactones 12 , 36 , and 45 , while the oxime 20 led to a mixture of the (E)- and (Z)-hydroximolactones 21 and 22 , which adopt different conformations. Their configuration was assigned, inter alia, by a comparison with the enol ethers 28 and 29 , which were obtained, together with 30 , from the reaction of the diazirine 5 with benzaldehyde and PBu3. Treatment of the hydroximolactone O-sulfonates 13 , 23 , 37 , and 46 with NH3/MeOH afforded the diaziridines 15 , 25 , 38 , and 47 in good yields, while the (E)-sulfonate 24 decomposed readily. Oxidation of the diaziridines gave 4 , 5 , 7 , and 8 , respectively. Thermolysis of the diazirines 1 and 4–9 in MeOH yielded the anomeric methyl glycosides 50/51 , 16/17 , 26/27 , 52/53 , 39/40 , 48/49 , and 54/55 , respectively. A comparison of the kinetic data of the thermolysis at four different temperatures shows the importance of conformational and electronic factors and is compatible with the hypothesis of a heterolytic cleavage of a C? N bond. An early transition state is evidenced by the absence of torsional strain by an annulated 1,3-dioxane ring. Thermolysis of 1 in MeCN at 23° led mostly to the diasteroisomeric (Z,Z)-, (E,E)-, and (E,Z)-lactone azines 56 , 57 , and 58 (Scheme 6), which convert to 56 under mild conditions, and to 59 (3%). The benzyloxyglucal 59 was obtained in higher yields (18%), together with 44% of 56–58 , by thermolysis of solid 1 . Similarly, thermolysis at higher temperatures of 4 in toluene, THF, or dioxane and of 9 in CH2Cl2 or THF yielded the (Z,Z)-lactone azines 60 and 61 , respectively, the latter being accompanied by the dihydro-oxazole 62 .  相似文献   

12.
13.
The four α,α,α, β,β,β,-hexamethyl α-hydrogen Coα, Coβ-dicyanocobyrinates 2b, d–f , with a free b-, d-, e-, and f-propionic-acid function, respectively, were prepared by partial hydrolysis of heptamethyl Coα, Coβ-dicyanocobyrinate (cobester; 1 ) in aqueous sulfuric acid. The cobester monoacids 2b, d–f were obtained as a ca. 1:1:1:1 mixture which was separated. The monoacids were purified by chromatography and isolated in crystalline form. The position of the free propionic-acid function was determined by an extensive analysis of 2b, d–f using 2D-NMR techniques; an analysis of the C,H-coupling network topology resulted in an alternative assignment strategy for cobyrinic-acid derivatives, based on pattern recognition. Additional information on the structure of the most polar of the four hexamethyl cobyrinates, of the b-isomer 2b , was also obtained in the solid state from a single-crystal X-ray analysis. Earlier structural assignments based on 1D-NMR spectra of the corresponding regioisomeric monoamides 3b, d–f (obtained from crystalline samples of the monoacids 2b, d–f ) were confirmed by the present investigations.  相似文献   

14.
To demonstrate the neighbouring-group participation of the 2-benzyloxy group in the glycosidation of phenols and of strongly acidic alcohols by the diazirine 1 , we examined the glycosidation of 4-nitrophenol, 4-methoxyphenol, (CF3)2CHOH, MeOH, and i-PrOH by the diazirine 11 , derived from the 2-deoxypyranose 6 . Oxidation of the oximes 7 yielded (E)- and (Z)- 8 . In solution, (E)- 8 isomerised to (Z)- 8 . Similarly, the (E)-configurated mesylate 9 , prepared from 8 , underwent acid-catalysed isomerisation to (Z)- 9 . Treatment of (Z)- 9 with NH3, followed by oxidation of the resulting diaziridine 10 with I2, yielded the desired diazirine 11 . Glycosidation by 11 of the above mentioned hydroxy compounds yielded the glycosides 12–21 . In agreement with the postulated neighbouring-group participation, these glycosidation proceeded without, or with a very low diastereoselectivity, favouring the axial anomers.  相似文献   

15.
1-Benzyl-tetrahydro-2-benzazepin-3-ones 4 were prepared by submitting the corresponding 1-benzyl-β-tetralones 3 to the Schmidt reaction. On the other hand, the rearrangement of the tetralones 3 by the Beckmann procedure gave 1-benzyl-tetrahydro-3-benzazepin-2-ones 5 . The syntheses of some hexahydrophenanthro-azepines of types 10 and 15 are also described.  相似文献   

16.
17.
18.
The crystal structure of 1,5‐anhydro‐2,3,4,6‐tetra‐O‐benzyl‐1‐hydrazi‐D ‐glucitol ( 2 ) is reported and compared with the structures of other diaziridines. It is the first crystal structure of an N,N‐unsubstituted diaziridine, noncoordinated at the N‐atom, and the first crystal structure of a C‐alkoxy‐diaziridine. Although there is considerable shortening of the C(5)O−C(1) bond, there is no asymmetry in the C(1)−N bond length, the C(5)O, C(1), C(2) plane bisecting the N−N bond. The C(1)−N bonds appear to be slightly shorter and the N−N bond longer than the average for diaziridines, although the structural data for diaziridines do not lend themselves to unequivocal interpretation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号