首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The protected disaccharide 44 , a precursor for the synthesis of allosamidin, was prepared from the glycosyl acceptor 8 and the donors 26–28 , best yields being obtained with the trichloroacetimidate 28 (Scheme 6). Glycosidation of 8 or of 32 by the triacetylated, less reactive donors 38–40 gave the disaccharides 46 and 45 , respectively, in lower yields (Scheme 7). Regioselective glycosidation of the diol 35 by the donors 38–40 gave 42 , the axial, intramolecularly H-bonded OH? C(3) group reacting exclusively (Scheme 5). The glycosyl acceptor 8 was prepared from 9 by reductive opening of the dioxolane ring (Scheme 3). The donors 26–28 were prepared from the same precursor 9 via the hemiacetal 25 . To obtain 9 , the known 10 was de-N-acetylated (→ 18 ), treated with phthalic anhydride (→ 19 ), and benzylated, leading to 9 and 23 (Schemes 2 and 3). Saponification of 23 , followed by acetylation also gave 9 . Depending upon the conditions, acetylation of 19 yielded a mixture of 20 and 21 or exclusively 20 . Deacetylation of 20 led to the hydroxyphthalamide 22 . De-N-acetylation of the 3-O-benzylated β-D -glycosides 11 and 15 , which were both obtained from 10 , was very sluggish and accompanied by partial reduction of the O-allyl to an O-propyl group (Scheme 2). The β-D -glycoside 30 behaved very similarly to 11 and 15 . Reductive ring opening of 31 , derived from 29 , yielded the 3-O-acetylated acceptor 32 , while the analogous reaction of the β-D -anomer 20 was accompanied by a rapid 3-O→4-O acyl migration (→ 34 ; Scheme 4). Reductive ring opening of 21 gave the diol 35 . The triacetylated donors 38–40 were obtained from 20 by debenzylidenation, acetylation (→ 36 ), and deallylation (→ 37 ), followed by either acetylation (→ 38 ), treatment with Me3SiSEt (→ 39 ), or Cl3CCN (→ 40 ).  相似文献   

2.
Stereocontrolled addition of alk-1-enylmetal reagents to the chiral (alkoxymethyl)-substituted acylsilanes (±)- 6 gave rise to α-silylated allyl alcohols, which were converted to the corresponding acetates or propionates 11–16 (Scheme 2). Deprotonation and silylation with Me3SiCl afforded – in an Ireland ester-enolate-accelerated Claisen rearrangement – stereoselectively αδ-silylated γδ-unsaturated carboxylic acids 18–24 (Scheme 4). The Me3Si groups in α-position to the COOH group of these compounds were removed chemoselectively in presence of the chiral silyl group in δ-position by treatment with Bu4NF · 3 H2O or Et3N · 3 HF (→ 27–32 ; Scheme 5). The reaction sequence allows a novel stereocontrolled access to chiral C-frameworks possessing a vinylsilane moiety with its full reaction potential.  相似文献   

3.
The regio- and stereoselectivity of the glycosidation of the partially protected mono-alcohols 3 and 7 , the diols 2 and 8 , and the triol 4 by the diazirine 1 have been investigated. Glycosidation of the α-D -diol 2 (Scheme 2) gave regioselectively the 1,3-linked disaccharides 11 and 12 (80%, α-D /β-D 9:1), whereas the analogous reaction with the βD -anomer 8 led to a mixture of the anomeric 1,3- and 1,4-linked disaccharides 13 (12.5%), 14 (16%), 15 (13%), and 16 (20.5%; Table 2). Protonation of the carbene by OH–C(4) of 2 is evidenced by the observation that the α-D -mono-alcohol 3 did not react with 1 under otherwise identical conditions, and that the β-D -alcohol 7 yielded predominantly the β-D -glucoside 18 (52%) besides 14% of 17 . Similarly as for the glycosidation of the diol 2 , the influence of the H-bond of HO? C(4) on the direction of approach of the carbene, the role of HO? C(4) in protonating the carbene, and the stereoelectronic control in the interception of the ensuring oxycarbenium cation are evidenced by the reaction of the triol 4 with 1 (Scheme 3), leading mostly to the α-D -configurated 1,3-linked disaccharide 19 (41%), besides its anomer 20 (16%), and some 4-substituted β-D -glucoside 21 (9%). No 1,6-linked disaccharides could be detected. In agreement with the observed reactivity, the 1H-NMR and IR spectra reveal a strong H-bond between HO? C(3) and the phthalimido group in the α-D -, but not in the β-D -allosides. The different H-bonds in the anomeric phthalimides are in keeping with the results of molecular-mechanics calculations.  相似文献   

4.
The α-D -allo-diol 9 possesses an intramolecular H-bond (HO? C(3) to O? C(1)) in solution and in the solid state (Fig. 2). In solution, it exists as a mixture of the tautomers 9a and 9b (Fig. 3), which possess a bifurcated H-bond, connecting HO? C(2) with both O? C(1) and O? C(3). In addition, 9a possesses the same intramolecular H-bond as in the solid state, while 9b is characterized by an intramolecular H-bond between HO? C(3) and O? C(4). In solution, the β-D -anomer 12 is also a mixture of tautomers, 12a and presumably a dimer. The H-bonding in 9 and 12 is evidenced by their IR and 1H-NMR spectra and by a comparison with those of 3–8, 10 , and 11 . The expected regioselectivity of glycosidation of 9 and 12 by the diazirine 1 or the trichloroacetimidate 2 is discussed on the basis of the relative degree of acidity/nucleophilicity of individual OH groups, as governed by H-bonding. Additional factors determining the regioselectivity of glycosidation by 1 are the direction of carbene approach/proton transfer by H-bonded OH groups, and the stereoelectronic control of both the proton transfer to the alkoxy-alkyl carbene (in the σ-plane) and the combination of the thereby formed ions (π-plane of the oxycarbenium ion). Glycosidation of 9 by the diazirine 1 or the trichloroacetimidate 2 proceeded in good yields (75–94%) and with high regioselectivity. Glycosidation of 9 and 12 by 1 or 2 gave mixtures of the disaccharides 14–17 and 18–21 , respectively (Scheme 2). As expected, glycosidation of 12 by 1 or by 2 gave a nearly 1:1 mixture of regioisomers and a slight preference for the β-D -anomers (Table 4). Glycosidation of the α-D -anomer 9 gave mostly the 1,3-linked disaccharides 16 and 17 (α-D β-D ) along with the 1,2-linked disaccharides 14 and 15 (α-D < β-D , 1,2-/1,3-linked glycosides ca. 1:4), except in THF and at low temperature, where the β-D -configurated 1,2-linked disaccharide 15 is predominantly formed. Similarly, glycosidation of 9 with 2 yielded mainly the 1,3-linked disaccharides (1,2-/1,3-linked products ca. 1:3 and α-D /β-D ca. 1:4). Yields and selectivity depend upon the solvent and the temperature. The regioselectivity and the unexpected stereoselectivity of the glycosidation of 9 by 1 evidences the combined effect of the above mentioned factors, which also explain the lack of regio-complementarity in the glycosidation of 9 by 1 and by 2 (Scheme 3). THF solvates the intermediate oxycarbenium ion, as evidenced by the strong influence of this solvent on the regio- and stereoselectivity, particularly at low temperatures, where kinetic control leads to a stereoelectronically preferred axial attack of THF on the oxycarbenium ion.  相似文献   

5.
It is proposed to study the influence of interresidue H-bonds on the structure and properties of polysaccharides by comparing them to a series of systematically modified oligosaccharide analogues where some or all of the glycosidic O-atoms are replaced by buta-1,3-diyne-1,4-diyl groups. This group is long enough to interrupt the interresidue H-bonds, is chemically versatile, and allows a binomial synthesis. Several approaches to the simplest monomeric unit required to make analogues of cellulose are described. In the first approach, allyl α-D -galactopyranoside ( 1 ) was transformed via 2 and the tribenzyl ether 3 into the triflate 4 (Scheme 2). Substitution by cyanide (→ 5–7 ) followed by reduction with DIBAH led in high yield to the aldehyde 9 , which was transformed into the dibromoalkene 10 and the alkyne 11 following the Corey-Fuchs procedure (Scheme 3). The alkyne was deprotected via 12 or directly to the hemiacetal 13 . Oxidation to the lactone 14 , followed by addition of lithium (trimethylsilyl)acetylide Me3SiC?CLi/CeCl3 (→ 15 ) and reductive dehydroxylation afforded the disilylated dialkyne 16 . The large excess of Pd catalyst required for the transformation 11 → 13 was avoided by deallylating the dibromoalkene 10 (→ 17 → 18 ), followed by oxidation to the lactone 19 , addition of Me3SiC?CLi to the anomeric hemiketals 20 (α-D /β-D 7:2), dehydroxylation to 21 , and elimination to the monosilylated dialkyne 22 (Scheme 3). In an alternative approach, treatment of the epoxide 24 (from 23 ) with Me3SiC?CLi/Et2AlCl according to a known procedure gave not only the alkyne 27 but also 25 , resulting from participation of the MeOCH2O group (Scheme 4). Using Me3Al instead of Et2AlCl increased the yield and selectivity. Deprotection of 27 (→ 28 ), dibenzylation (→ 29 ), and acetolysis led to the diacetate 30 which was partially deacetylated (→ 31 ) and oxidized to the lactone 32 . Addition of Me3SiC?CLi/TiCl4 afforded the anomeric hemiketals 33 (α-D /β-D 3:2) which were deoxygenated to the dialkyne 34 . This synthesis of target monomers was shortened by treating the hydroxy acetal 36 (from 27 ) with (Me3SiC?C)3Al (Scheme 5): formation of the alkyne 37 (70%) by fully retentive alkynylating acetal cleavage is rationalised by postulating a participation of HOC(3). The sequence was further improved by substituting the MeOCH2O by the (i-Pr)3SiO group (Scheme 6); the epoxide 38 (from 23 ); yielded 85% of the alkyne 39 which was transformed, on the one hand, via 40 into the dibenzyl ether 29 , and, on the other hand, after C-desilylation (→ 41 ) into the dialkyne 42 . Finally, combined alkynylating opening of the oxirane and the 1,3-dioxolane rings of 38 with excess Et2Al C?CSiMe3 led directly to the monomer 43 which is thus available in two steps and 77% yield from 23 (Scheme 6).  相似文献   

6.
In the context of the hypothesis postlating a heterolytic cleavage of a C? N bond during thermolysis of alkoxydiazirines (Scheme 1), we report the preparation of the diazirines 4 , 5 , 7 , and 8 , the kinetic parameters for the thermolysis in MeOH of the diazirines 1 and 4–9 , and the products of their thermolysis in an aprotic environment. The diazirines 4 , 57 , and 8 (Scheme 2–5) were prepared from the known hemiacetals 10 , 19 , 34 (prepared from 31 in an improved way), and 42 according to an established method. The oximes 11 , 20 , 35 , and 43 were obtained from the corresponding hemiacetals as (E/Z)-mixtures; 43 was formed together with the cyclic hydroxylamine 44 . Oxidation of 11 , 35 , and 43 (N-chlorosuccinimide/1,8-diazabicyclo[5.4.0]undec-7-ene (NCS/DBU) or NaIO4) gave good yields of the (Z)-hydroximolactones 12 , 36 , and 45 , while the oxime 20 led to a mixture of the (E)- and (Z)-hydroximolactones 21 and 22 , which adopt different conformations. Their configuration was assigned, inter alia, by a comparison with the enol ethers 28 and 29 , which were obtained, together with 30 , from the reaction of the diazirine 5 with benzaldehyde and PBu3. Treatment of the hydroximolactone O-sulfonates 13 , 23 , 37 , and 46 with NH3/MeOH afforded the diaziridines 15 , 25 , 38 , and 47 in good yields, while the (E)-sulfonate 24 decomposed readily. Oxidation of the diaziridines gave 4 , 5 , 7 , and 8 , respectively. Thermolysis of the diazirines 1 and 4–9 in MeOH yielded the anomeric methyl glycosides 50/51 , 16/17 , 26/27 , 52/53 , 39/40 , 48/49 , and 54/55 , respectively. A comparison of the kinetic data of the thermolysis at four different temperatures shows the importance of conformational and electronic factors and is compatible with the hypothesis of a heterolytic cleavage of a C? N bond. An early transition state is evidenced by the absence of torsional strain by an annulated 1,3-dioxane ring. Thermolysis of 1 in MeCN at 23° led mostly to the diasteroisomeric (Z,Z)-, (E,E)-, and (E,Z)-lactone azines 56 , 57 , and 58 (Scheme 6), which convert to 56 under mild conditions, and to 59 (3%). The benzyloxyglucal 59 was obtained in higher yields (18%), together with 44% of 56–58 , by thermolysis of solid 1 . Similarly, thermolysis at higher temperatures of 4 in toluene, THF, or dioxane and of 9 in CH2Cl2 or THF yielded the (Z,Z)-lactone azines 60 and 61 , respectively, the latter being accompanied by the dihydro-oxazole 62 .  相似文献   

7.
NaSMe in toluene leads to regioselective de-C-silylation of the bis[(trimethylsilyl)ethynyl]saccharide 2 , but to decomposition of butadiynes such as 1 or 12 . We have, therefore, combined the known reagent-controlled, regioselective desilylation of 2 and of 12 (AgNO2/KCN) with a substrate-controlled regioselective de-C-silylation, based on C-silyl groups of different size. This combination was studied with the fully protected 3 which was mono-desilylated to 4 or to 5 (Scheme 1). Triethylsilylation of 5 (→ 6 ) was followed by removal of the Me3Si group (→ 7 ), introduction of a (t-Bu)Me2Si group (→ 8 ) and removal of the Et3Si group yielded 9 ; these high-yielding transformations proceed with a high degree of selectivity. Iodination of 4 gave 10 . The latter was coupled with 5 to the homodimer 11 and the heterodimer 12 , which was desilylated to 13 . The second building block for the tetramer was obtained by coupling 14 (from 7 ) with 5 , leading to 15 and 16 . Removal of the Me3Si group (→ 17 ) and iodination led to 18 which was coupled with 13 to the homotetramer 20 and the heterotetramer 19 (Scheme 2). Deprotection of 19 gave 21 , which was, on the one hand, iodinated to 22 , and, on the other hand, protected by the (t-Bu)Me2Si group (→ 23 ). Removal of the Et3Si group (→ 24 ) and coupling afforded the homooctamer 26 and the heterooctamer 25 . Yields of iodination, silylation, and desilylation were consistently high, while heterocoupling proceeded in only 50–55%. Cleavage of the (i-Pr)3SiC and MeOCH2O groups of 11 (→ 27 ), 15 (→ 28 ), 20 (→ 29 ) and 26 (→ 30 ) proceeded in high yields (Scheme 3). Complete deprotection in two steps of the heterocoupling products 16 (→ 31 → 32 ), 19 (→ 33 → 34 ), and 25 (→ 35 → 36 ) gave the unprotected dimer 32 , tetramer 34 , and octamer 36 in high yields (Scheme 4). Only the dimer 32 is soluble in H2O; the 1H-NMR spectra of 32 , 34 , and 36 in (D6)DMSO (relatively low concentration) show no signs of association.  相似文献   

8.
Glycosidation by the diazirine 1 , the trichloroacetimidate 4 , and the bromide 5 of the altro-diol 2 , possessing an intramolecular H-bond (HO? C(3) to O? C(1)) in solution, but not in the solid state, proceeds with high and complementary regioselectivity. From 2 and 1 , one obtains mostly the 1,2-linked disaccharides 10 and 11 (β-D > α-D ), together with the 1,3-linked isomers 12 and 13 (α-D > β-D ; 1,2-/1,3-linked products ca. 9:1), the demethylated 1,3-linked disaccharides 24–27 , the trisaccharides 19–22 , the lactone azines 23 , and the hydroxyglucal 18 , while 2 reacted with 4 or 5 to yield mostly the 1,3-linked disaccharides (1,2-/1,3-linked products ca. 1:9). The disaccharides were additionally characterized as acetates (→ 14–17, 28–31 ). Yields and stereoselectivity depended upon the donor, stoichiometry, solvent, temperature, and concentration. Glycosidation of the 1,3-linked disaccharides with 1 yielded the trisaccharides 19–22 . Reaction of the β-D -altro-diol 3 with 1 gave the 1,2- and 1,3-linked disaccharides 32/33 and 34/35 in a 1:1 ratio, characterized as the acetates 36–39 , while glycosidation with 5 according to Lemieux proceeded regioselectively (1,2-/1,3-linked products 91:9). The monotosylates 6 and 7 reacted with 1 to yield the anomeric pairs 40/41 , and 42/43 of the tosylated disaccharides; the oxiranes 44 and 45 were not observed.  相似文献   

9.
The reactivity of glycosylidene carbenes derived from pivaloylated vs. benzylated diazirines 1 and 2 towards enol ethers have been examined. The pivaloylated 1 led to higher yields of spirocyclopropanes than the benzylated 2. Among the enol ethers tested, dihydrofuran 6 proved most reactive, yielding 71–72% of the spiro-linked tetrahydrofuran 7 , while the benzylated diazirine 2 afforded only 33% of the analogue 8 (Scheme 1 ). Other enol ethers proved much less reactive. The addition of 1 and 2 to the dihydropyran 10 and the 2, 3-dihydro-5-methyl-furan 15 gave low yields of single cyclopropanes (→ 12 , 14 , and 16 ), and the glycals 17 and 18 , and (E)-1-methoxy-oct-1-ene ( 23 ) did not react. The main products of these reactions were the azines (Z, Z)- 11 and (Z, Z)/( E, E)- 13. Similarly, 1 and 2 reacted poorly with (Z)-1-methoxyoct-1-ene ( 24 ), leading to cyclopropanes 25 / 26 / 27 and 28 / 29 / 30 / 31 (Scheme 2). Main products were again the azines (Z, Z)- 11 and (Z, Z)/(E, E)- 13 . The structure of 70 and 25 was established by X-ray analysis (Figs. 1 and 2). The mechanism of addition of glycosylidene carbenes to enol ethers is discussed, AMI Calculations indicate that the LUMOcarbene/HOMOalkoxyalkene interaction is dominant at the beginning of the reaction, while the transition states are characterized by a dominant interaction of the doubly occupied, sp2-hybridized orbital of the carbene with the LUMO of the enol ether. The relative reactivity of the carbenes towards either the enol ethers or the diazirines determine type and yields of the products.  相似文献   

10.
The application of the allyl-ester moiety as protecting principle for the carboxy group of N-acetylneuraminic acid is described. Peracetylated allyl neuraminate 2 is synthesized by reacting the caesium salt of the acid 1 with allyl bromide. Treatment of 2 with HCl in AcCl or with HF/pyridine gives the corresponding 2-chloro or 2-fluoro derivatives 3 and 4 , respectively (Scheme 1). In the presence of Ag2CO3, the 2-chloro carbohydrate 3 reacts with di-O-isopropylidene-protected galactose 5 to give the 2–6 linked disaccharide with the α-D -anomer 6a predominating (α-D /β-D = 6:1; Scheme 2). Upon activation of the 2-fluoro derivative 4 with BF3 · Et2O, the β-D -anomer 6b is formed preferentially (α-D /β-D = 1:5). In further glycosylations of 4 with long-chain alcohols, the β-D -anomers are formed exclusively (see 10 and 11 ; Scheme 4). The allyl-ester moiety can be removed selectively and quantitatively from the neuraminyl derivatives and the neuraminyl disaccharides by Pd(0)-catalyzed allyl transfer to morpholine as the accepting nucleophile (see Scheme 5).  相似文献   

11.
Glycosidation of the myo-inositol derivatives 2 and 3 by the diazirine 1 yields 90% of a diastereoisomer pair of β-D -glycosides in a 1:1 ratio, i.e. 5/6 and 7/8 , respectively (Scheme 1). The crystal structure of 3 shows a strong intramolecular H-bond, which persists in solution, as indicated by FT-IR and 1H-NMR spectra. Yields and diastereoselectivity are lower for the glycosidation of 24 by 1 (Scheme 3). The resulting 1,2- and 1,4-linked disaccharides 25–28 were isolated as their acetates 29–32 . The previously determined crystal structure of 24 shows no intramolecular H-bonds. The yield of the glycosidation of 24 , but not of 3 , depends upon the concentration, indicating that activation of 24 by intermolecular H-bonds is required. Glycosidation of 2 and 3 with the trichloroacetimidate 14 gave mixtures of four ( 5,6,15 , and 16 ), and six ( 7,8 , and 17–20 ) disaccharides, respectively (Scheme 2).  相似文献   

12.
The relation between H-bonding in diequatorial trans-1,2 and axial, equatorial cis-1,2-diols and the regioselectivity of glycosidation by the diazirine 1 was examined. H-Bonds were assigned on the basis of FT-IR and 1H-NMR spectra (Fig. 1). Glycosidation by 1 of the gluco-configurated diequatorial trans-2,3-diols 4–7 yielded the mono-glucosylated products 16/17/20/21 (69–89%); 1,2-/1,3-linked products (37–46:63–54), 24/25/28/29 (60–63%; 1,2-/1,3-linked products 46–51:54–49), 32–35 (69–94%; 1,2-/1,3-linked products 45–52:55–48), and 36/37/40/41 (59–63%; 1,2-/1,3-linked products 52–59:48–41), respectively (Scheme 1, Table 3). The disaccharides derived from 4, 5 , and 7 were characterized as their acetates 18/19/22/23, 26/27/30/31 , and 38/39/42/43 , respectively. Glycosidation of the galacto-configurated diequatorial 2,3-diols 8 and 9 and the manno-configurated diequatorial 3,4-diol 10 by 1 (Scheme 2, Table 3) also proceeded in fair yields to give the disaccharides 44–47 (69–80%;1,2-/1,3-linked products ca. 1:1), 48–51 (51–61%;1,2/-1,3-linked products 54–56:56–54), and 56/57/60/61 (71–80%; 1,3-/1,4-linked products 49–54:51–46), respectively. The 1,3-linked disaccharides 56/57 derived from the diol 10 were characterized as the acetates 58/59 . The regio- and stereoselectivities of the glycosidation by 1 were much better for the α-D -manno-configurated axial, equatorial cis-2,3-diol 11 and the galacto-configurated axial, equatorial cis-3,4-diol 13 (1,2-/1,3-linked disaccharides ca. 3:7 for 11 and 1,3-/1,4-linked disaccharides ca. 4:1 for 13 ; Scheme 3, Table 4). The regio- and stereoselectivity for the β-D -manno-configurated cis-2,3-diol 12 were, however, rather poor (1,2-/1,3-linked products 48:52). The 1,2-linked disaccharides 66/67 derived from 12 were characterized as the acetates 70/71 . Koenigs-Knorr-type glycosidation of the cis-diols 11–13 by 2 or 3 proceeded with a similar regio- and a higher stereoselectivity (α-D > β-D with the donor 2 and α-D < β-D with the donor 3 ) than with 1 , with the exception of 12 which did not react with 2 . The regioselectivity of the glycosidations by 1 agrees fully with the H-bonding scheme of the diols and with the hypothesis that the intermediate carbene is preferentially protonated by the most weakly H-bonded OH group. The regioselectivity of the glycosidation by 2 and by 3 is determined by a higher reactivity of the equatorial OH groups and by H-bonding. Several H-bonded and equilibrating isomers of a given diol may intervene in the glycosidation by 1 , or by 2 and 3 , resulting in the same regioselectivity. The low nucleophilicity of 12 and the low degree of regioselectivity in its reaction with 3 show that stereoelectronic effects may also profoundly influence the nucleophilicity of OH groups.  相似文献   

13.
The syntheses of glycosides from the diazirine 1 and a range of alcohols under thermal and/or photolytic conditions are described. Yields and diastereoselectivities depend upon the pKHA values of the alcohols, the solvent, and the reaction temperature. The glycosidation of weakly acidic alcohols (MeOH, EtOH, i-PrOH, and t-BuOH, 1 equiv. each) in CH2Cl2 at room temperature leads to the glycosides 2–5 in yields between 60 and 34% (Scheme 1 and Table 1). At ?70 to ?60°, yields are markedly higher. In CH2Cl2, diastereoselectivities are very low. In THF, at ?70 to ?60°, however, glycosidation of i-PrOH leads to α-D -/β-D - 4 in a ratio of 8:92. More strongly acidic alcohols, such as CF3CH2OH, (CF3)2 CHOH, and (CF3)2C(Me)OH, and the highly fluorinated long-chain alcohols CF3(CF2)5(CH2)2OH ( 11 ) and CHF2(CF2)9CH2OH ( 13 ) react (CH2Cl2, r.t.) in yields between 73 and 85% and lead mainly to the β-D -glucosides β-D - 6 to β-D - 8 , β-D - 12 , and β-D - 14 (d.e. 14–68%). Yields and diastereoselectivities are markedly improved, when toluene, dioxane, 1,2-dimetoxyethane, or THF are used, as examined for the glycosidation of (CF3)2C(Me)OH, yielding (1,2-dimethoxyethane, 25°) 80% of α-D -/ β-D - 8 in a ratio of 2:98 (d.e. 96%; Table 4). In EtCN, (CF3)2C(Me)OH yields up to 55% of the imidate 10 . Glycosidation of di-O-isopropylideneglucose 15 leads to 16 (CH2Cl2, r.t.; 65%, α-D / β-D = 33:67). That glycosidation occurs by initial protonation of the intermediate glycosylidene carbene is evidenced, for strongly acidic alcohols, by the formation of 10 , derived from the attack of (CF3)2MeCO? on an intermediate nitrilium ion (Scheme 4), and for weakly acidic alcohols, by the formation of α-D - 9 and β-D - 9 , derived by attack of i-PrO? on intermediate tetrahydrofuranylium ions. A working hypothesis is presented (Scheme 3). The diastereoselectivities are rationalized on the basis of a protonation in the σ plane of the intermediate carbene, the stabilization of the thereby generated ion pair by interaction with the BnO? C(2) group, with the solvent, and/or with the alcohol, and the final nucleophilic attack by RO? in the π plane of the (solvated) oxonium ion.  相似文献   

14.
The N′-(glycofuranosylidene)toluene-4-sulfonohydrazides 5 and 10 (Scheme 1) were prepared in good yields by oxidation (1,3-dibromo-5,5-dimethylhydantoin/Et3N) of the N′-glycosyltoluene-4-sulfonohydrazides 4 and 9 , which were obtained from 2,3,5-tri-O-benzyl-D -ribose ( 3 ) and 2,3,5-tri-O-benzyl-D -arabinose ( 8 ), respectively, and toluene-4-sulfonohydrazide. The analogous naphthalene-2-sulfonohydrazides 7 and 12 were similarly prepared from 3 and 8 via 6 and 11 . Photolysis in the presence of phenol of the sodium salt 15 (Scheme 2), best generated in situ, yielded the anomeric glycosides 16 , some 5 , and traces of the glycosides (1R)/(1S)- 17 . Photolysis of 15 in THF gave the sulfones α-D /β-D - 18 . Photolysis of 15 (quartz filter) and dimethyl fumarate led to a single cyclopropane 19 , the sulfones α-D /β-D - 18 , and the N-(ribofuranosyl)-N′-(ribofuranosylidene)toluene-4-sulfonohydrazide 20 . Similarly, N-phenylmaleimide afforded the cyclopropanes 21 and 22 . Photolysis of the sodium salt of 10 and phenol afforded the anomeric glycosides α-D /β-D - 23 , the C-glycoside 24 , and the sulfone 25 . Photolytic glycosidation of 15 with N6-benzyladenine gave the two nucleosides 26 and 27 (Scheme 3).  相似文献   

15.
A new approach towards the synthesis of glycosides based upon a (formal) insertion of glycosylidene carbenes into O? H bonds is presented. The synthesis and characterization of the glycosylidene-derived diazirines 25 – 28 , precursors of glycosylidene carbenes, are described. The diazirines were prepared by the rapid, high-yielding oxidation of the diaziridines 20 and 22 – 24 with I2/Et3N. The diaziridines, the first examples of C- alkoxy-diaziridines, were formed in high yields by the reaction of the [(glycosylidene)-amino]methanesulfonates 14 and 17 – 19 with a saturated solution of NH3 in MeOH. The diazirines are highly reactive compounds, losing N2 at room temperature or below. The reaction of the gluco-configurated diazirine 25 with i-PrOH yielding a mixture of the α- and β-D -glucosides 29 and 30 illustrates the potential of glycosylidene-derived diazirines as a new type of glycosyl donors.  相似文献   

16.
The diazirine 1 , upon thermolysis or photolysis in either acetone or cyclohexanone, at different concentrations, yield the spiro epoxides 2 and 3 , and 4 and 5 , respectively (Scheme 1). Yield of 2 and 3 depended both on the temperature and the concentration, and correlated inversely with the yield of the major by-product, the enol-derived glycoside 6 . Other by-product were the benzyloxglycal 7 and the lactone azines 8 . ZnCl2-Promoted methanolysis of 2 under mild condition yielded mixture of the uloside 9 and 10 (1.2:1); similarly, 4 yielded 11 and 12 (1.8:1; Scheme 2). More strongly acidic conditions converted 11 into 12 , evidencing that ZnCl2-promoted methanolysis proceeds under kinetic control, which is rationalized. The diazirine 13 , upon thermolysis of Photolysis in either acetone of cyclohexanone, yielded the α-D -configurated spiro epoxides 14 and 16 , and the α-D -configurated dihydrooxazoles 15 and 17 , respectively (Scheme 3), which are either formed by ring-opening of ß-D -epoxides, by competitive interception of the initially formed, hypothetical addition products of the intermediate carbene to the ketones. The glycosylidene carbenes, derived from 1 or 13 are not very reactive towards ketones, yields are good only when sterically unhindered ketones are used in large excess.  相似文献   

17.
Hydrogen bonding of the triol 4 in chlorinated solvents was studied by IR (CH2Cl2 and CCl4) and 1H-NMR spectroscopy (CDCl3), and the regioselectivity of the glycosidation of the triol 4 by the diazirine 1 is predicted on the basis of two assumptions: preferred protonation of the intermediate glycosylidene carbene by the OH group involved in the weakest intramolecular H-bond, and attack in the π-plane of the thereby generated oxycarbenium cation either by the reoriented oxy anion, or by a properly oriented vicinal OH group. Glycosidation led to the disaccharides 5–10 (Scheme) which were separated and characterized as their acetates 11–16 , to the lactone azines 17 and to the 2-(benzyloxy)glucal 18 . In agreement with the predictions, glycosidation in non-coordinating solvents gave the 1,2-, 1,3-, and 1,4-linked disaccharides in decreasing relative amounts. Glycosidation in THF proceeded with a lower degree of regioselectivity and led preferentially to the β -D -anomers, except for the minor, 1,4-linked disaccharides, where THF had only a weak influence on stereoselectivity at room temperature and led to a slight increase of the α -D -anomer at ?80°.  相似文献   

18.
The triphenylstannyl β-D -glucopyranoside 4 was synthesized in one step from the 1,2-anhydro-α-D -glucopyranose 3 with (triphenylstannyl)lithium (Scheme 1). Transmetallation of 4 with excess BuLi, followed by quenching the dianion 7 with CD3OD gave (1S)-1,5-anhydro-3,4,6-tri-O-benzyl-[1-2H]-D - glucitol ( 8 ) in 81% yield (Scheme 2). Trapping of 7 with benzaldehyde, isobutyraldehyde, or acroleine gave the expected β-D -configurated products 11, 12 , and 13 in good yields. Preparation of C-acyl glycosides from acid chlorides, such as acetyl or benzoyl chloride was not practicable, but addition of benzonitrile to 7 yielded 84% of the benzoylated product 14 . Treatment of 7 with MeI led to 15 (30%) along with 40% of 18 , C-alkylation being accompanied by halogen-metal exchange. Prior addition of lithium 2-thienylcyanocuprate increased the yield of 15 to 50% and using dimethyl sulfate instead of MeI led to 77% of 15 . No α-D -anomers could be detected, except with allyl bromide as the electrophile, which yielded in a 1:1 mixture of the anomers 16 and 17 .  相似文献   

19.
Ethyl (1R, 2S)-2-hydroxycyclopentanecarboxylate and -cyclohexanecarboxylate ( 1a and 2a , respectively) obtained in 40 and 70% yield by reduction of 3-oxocyclopentanecarboxylate and cyclohexanecarboxylate, respectively (Scheme 2), with non-fermenting yeast, are converted to bicyclic dioxanone derivatives 3 and 4 with formaldehyde, isobutyraldehyde, and pivalaldehyde (Scheme 3). The Li-enolates of these dioxanones are alkylated (→ 5a – 5i , 5j , 6a – 6g ), hydroxyalkylated (→ 51, m, 6d, e ), acylated (→ 5k, 6c ) and phenylselenenylated (→ 7 – 9 ) with usually high yields and excellent diastereoselectivities (Scheme 3, Tables and 2). All the major isomers formed under kinetic control are shown to have cis-fused bicyclic structures. Oxidation of the seleno compounds 7–9 leads to α, β-unsaturated carbonyl derivatives 10 – 13 (Scheme 3) of which the products 12a – c with the C?C bond in the carbocyclic ring (exocyclic on the dioxanone ring) are most readily isolated (70–80% from the saturated precursors). Michael addition of Cu(I)-containing reagents to 12a – c and subsequent alkylations afford dioxanones 14a – i and 16a – d with trans-fused cyclohoxane ring (Scheme 4). All enolate alkylations are carried out in the presence of the cyclic urea DMPU as a cosolvent. The configuration of the products is established by NMR measurements and chemical correlation. Some of the products are converted to single isomers of monocyclic hydroxycyclopentane ( 17 – 19 ) and cyclohexane derivatives ( 20 – 23 ; Scheme 5). Possible uses of the described reactions for EPC synthesis are outlined. The observed steric course of the reactions is discussed and compared with that of analogous transformations of monocyclic and acyclic derivatives.  相似文献   

20.
Phenol, 4-methoxyphenol, 4-nitrophenol, methyl orsellinate ( 1 ), and 2,6-di(tert-butyl)-4-methylphenol (BHT; 2 ) have been glycosylated by thermal reaction (20–60°) with various glycosylidene-derived diazirines. 4-Methoxyphenol reacted with the D-glucosylidene-derived diazirine 3 to give O-glucosides ( 4 and 5 , 69%, 3:1) and C-glucosides ( 6 and 7 , 16%, 1:1). Similarly, phenol yielded O-glucosides ( 10 and 11 , 70%, 4:1) and C-glucosides ( 12 and 13 , 13%, 1:1). 4-Nitrophenol gave only O-glycosides, 3 leading to 14 and 15 (75%, 3:2; Scheme 1), and the D-galactosylidene-derived diazirine 17 to 22 and 23 (52% (from 16 ), 65:35; Scheme 2). The reaction of phenol with 17 yielded 58% (from 16 ) of the O-galactosides 18 and 19 (4:1) and 14% of the C-galactosides 20 and 21 (1:1). From the D-mannosylidene-derived diazirine 25 , we predominantly obtained the α-D-configurated 26 (38 % from 24 ). These results are interpreted by assuming that an intermediate (presumably a glycosylidene carbene) first deprotonates the phenol to generate an ion pair which combines to give O- and - with electron-rich phenolates - also C-glycosides. A competition experiment of 3 with 4-nitro- and 4-methoxyphenol gave the products from the former ( 14 and 15 ) and the latter phenol ( 4-7 ) in almost equal amounts. Differences in the kinetic acidity of OH groups, however, may form the basis of a regioselective glycosidation, as evidenced by the reaction of 3 with methyl orsellinate ( 1 ) yielding exclusively the 4-O-monoglycosylated products 27 and 28 (78%, 85:15), although diglycosidation is possible ( 27 → 31 and 32 ; 67%, 4:3; Scheme 3). Steric hindrance does not affect this type of glycosidation; 3 reacted with the hindered BHT ( 2 ) to afford 33 and 34 (81 %, 4:1). The predominant formation of 1,2-trans -configurated O-aryl glycosides is rationalized by a neighbouring-group participation of the 2-benzyloxy group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号