首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
First Example of an H-Shift in ‘Thiocarbonyl Aminides’ (N-(Alkylidenesulfonio)aminides) Reaction of benzyl azide ( 15a ) with the sterically hindered C?S group of 4,4-dimethyl-1,3-thiazole-5(4H)-thiones 14 (Scheme 3) and 1,1,3,3-tetramethylindane-2-thione ( 17 , Scheme 4) at 80° leads to the corresponding imines in high yield, without formation of any by-product. In contrast, 15a and 2,2,4,4-tetramethyl-3-thioxocyclobutanone ( 7 ) under the same conditions yielded, in addition to imine 19 , products 20a and 21 (Scheme 5). For the formation of 20a , a reaction mechanism via [1,4]-H shift in the intermediate ‘thiocarbonyl aminides’ 23 is proposed (Scheme 6). Product 21 as well as the dithiazole derivative 22 , which is formed only in the reaction with 4-nitrobenzyl azide ( 15c ), are formal adducts of the dipole 23 . Whereas precedents are known for the formation of cycloadducts of type 22 , the pathway to 21 is not known. Two possible mechanisms of its formation are proposed in Schemes 8 and 9.  相似文献   

2.
1,3-Dipoles with a Central S-Atom from the Reaction of Azides and Thiocarbonyl Compounds: An Unexpected MeS Migration in the Trapping Product of a ‘Thiocarbonyl-aminide’ with Methyl Dithiobenzoate Reaction of PhN3 with O-methyl thiobenzoate ( 11a ) and thioacetate ( 11c ) as well as with the dithio esters 11b,d at 80° yields the corresponding imidates and thioimidates 12 (Scheme 3). The formation of 12 is rationalized by a 1,3-dipolar cycloaddition of the azide and the C?S group followed by successive elimination of N2 and S. In the three-component reaction of 11b , PhN3, and the sterically crowded thioketone 1a , 1,2,4-trithiolane 13a and 1,4,2-dithiazolidine 3a are formed in addition to 12b (Scheme 4). The heterocycles 13a and 3a are trapping products of 1a and ‘thiocarbonyl-thiolate’ 5a and ‘thiocarbonyl-aminide’ 2a (Ar?Ph), respectively (Scheme 6). These 1,3-dipoles are formed as reactive intermediates. Surprisingly, in the presence of catalytic amounts of acids, the major product is the (methyldithio)cyclobutyl thioimidate of type 14 (Scheme 5), formed by an acid-catalyzed MeS migration in dithiazolidine 17 . A reaction mechanism is proposed in Scheme 7.  相似文献   

3.
1,5-Dipolar Electrocyclization of Acyl-Substituted ‘Thiocarbonyl-ylides’ to 1,3-Oxathioles The reaction of α-diazoketones 15a, b with 4,4-disubstituted 1,3-thiazole-5(4H)-thiones 6 (Scheme 3), adamantanethione ( 17 ), 2,2,4,4-tetramethyl-3-thioxocyclobutanone ( 19 ; Scheme 4), and thiobenzophenone ( 22 ; Scheme 5), respectively, at 50–90° gave the corresponding 1,3-oxathiole derivatives as the sole products in high yields. This reaction opens a convenient access to this type of five-membered heterocycles. The structures of three of the products, namely 16c, 16f , and 20b , were established by X-ray crystallography. The key-step of the proposed reaction mechanism is a 1,5-dipolar electrocyclization of an acyl-substituted ‘thiocarbonyl-ylide’ (cf. Scheme 6). The analogous reaction of 15a, b with 9H-xanthen-9-thione ( 24a ) and 9H-thioxanthen-9-thione ( 24b ) yielded α,β-unsaturated ketones of type 25 (Scheme 5). The structures of 25a and 25c were also established by X-ray crystallography. The formation of 25 proceeds via a 1,3-dipolar electrocyclization to a thiirane intermediate (Scheme 6) and desulfurization. From the reaction of 15a with 24b in THF at 50°, the intermediate 26 (Scheme 5) was isolated. In the crude mixtures of the reactions of 15a with 17 and 19 , a minor product containing a CHO group was observed by IR and NMR spectroscopy. In the case of 19 , this side product could be isolated and was characterized by X-ray crystallography to be 21 (Scheme 4). It was shown that 21 is formed – in relatively low yield – from 20a . Formally, the transformation is an oxidative cleavage of the C?C bond, but the reaction mechanism is still not known.  相似文献   

4.
The reaction of 1H‐imidazole‐4‐carbohydrazides 1 , which are conveniently accessible by treatment of the corresponding esters with NH2NH2?H2O, with isothiocyanates in refluxing EtOH led to thiosemicarbazides (=hydrazinecarbothioamides) 4 in high yields (Scheme 2). Whereas 4 in boiling aqueous NaOH yielded 2,4‐dihydro‐3H‐1,2,4‐triazole‐3‐thiones 5 , the reaction in concentrated H2SO4 at room temperature gave 1,3,4‐thiadiazol‐2‐amines 6 . Similarly, the reaction of 1 with butyl isocyanate led to semicarbazides 7 , which, under basic conditions, undergo cyclization to give 2,4‐dihydro‐3H‐1,2,4‐triazol‐3‐ones 8 (Scheme 3). Treatment of 1 with Ac2O yielded the diacylhydrazine derivatives 9 exclusively, and the alternative isomerization of 1 to imidazol‐2‐ones was not observed (Scheme 4). It is important to note that, in all these transformations, the imidazole N‐oxide residue is retained. Furthermore, it was shown that imidazole N‐oxides bearing a 1,2,4‐triazole‐3‐thione or 1,3,4‐thiadiazol‐2‐amine moiety undergo the S‐transfer reaction to give bis‐heterocyclic 1H‐imidazole‐2‐thiones 11 by treatment with 2,2,4,4‐tetramethylcyclobutane‐1,3‐dithione (Scheme 5).  相似文献   

5.
The 1,3‐dipolar cycloaddition of 2,2,4,4‐tetramethyl‐3‐thioxocyclobutanone S‐methylide ( 2a ), generated in situ by thermal extrusion of N2 from the corresponding 2,5‐dihydro‐1,3,4‐thiadiazole 1a , with electron‐deficient acetylenic compounds yields spirocyclic 2,5‐dihydrothiophene derivatives of type 4 (Scheme 2). Mixtures of diastereoisomers are obtained in the case of propiolates. The strained cyclooctyne also undergoes smooth cycloadditions with thioketone S‐methylides (Scheme 3). Under acidic conditions, the spirocyclic products of type 4 and 6a isomerize, via opening of the cyclobutanone ring and aromatization of the five‐membered ring, to thiophene derivatives of type 7 (Scheme 4).  相似文献   

6.
The reaction of aldimines with α‐(hydroxyimino) ketones of type 10 (1,2‐diketone monooximes) was used to prepare 2‐unsubstituted imidazole 3‐oxides 11 bearing an alkanol chain at N(1) (Scheme 2, Table 1). These products were transformed into the corresponding 2H‐imidazol‐2‐ones 13 and 2H‐imidazole‐2‐thiones 14 by treatment with Ac2O and 2,2,4,4‐tetramethylcyclobutane‐1,3‐dithione, respectively (Scheme 3). The three‐component reaction of 10 , formaldehyde, and an alkane‐1,ω‐diamine 15 gave the bis[1H‐imidazole 3‐oxides] 16 (Scheme 4, Table 2). With Ac2O, 2,2,4,4‐tetramethylcyclobutane‐1,3‐dithione or Raney‐Ni, the latter reacted to give the corresponding bis[2H‐imidazol‐2‐ones] 19 and 20 , bis[2H‐imidazol‐2‐thione] 21 , and bis[imidazole] 22 , respectively (Schemes 5 and 6). The structures of 11a and 16b were established by X‐ray crystallography.  相似文献   

7.
The 3,3‐dichloro‐2,2,4,4‐tetramethylcyclobutanethione ( 4b ) was prepared from the parent diketone by successive reaction with PCl5 and Lawesson reagent in pyridine. This new thioketone 4b was transformed into 1‐chlorocyclobutanesulfanyl chloride 5 and chloro 1‐chlorocyclobutyl disulfide 9 by treatment with PCl5 and SCl2, respectively, in chlorinated solvents (Schemes 1 and 2). These products reacted with S‐ and P‐nucleophiles by substitution of Cl at the S‐atom; e.g., the reaction with 4b yielded the di‐ and trisulfides 6b and 11 , respectively. Surprisingly, only pentasulfide 12 was formed in the reaction of 9 with thiobenzophenone (Scheme 3). In contrast to 5 and 9 , the corresponding chloro 1‐chlorocyclobutyl trisulfide 13 could not be detected, but reacted immediately with the starting thioketone 4b to give the tetrasulfide 14 (Scheme 4). Oxidation of 4b with 3‐chloroperbenzoic acid (mCPBA) yielded the corresponding thione oxides (= sulfine) 15 , which underwent 1,3‐dipolar cycloadditions with thioketones 3a and 4b (Scheme 5). Furthermore, 4b was shown to be a good dipolarophile in reactions with thiocarbonylium methanides (Scheme 6) and iminium ylides (= azomethine ylides; Scheme 7). In the case of phenyl azide, the reaction with 4b gave the symmetrical trithiolane 25 (Scheme 8).  相似文献   

8.
The reaction of N,N′‐diarylselenoureas 16 with phenacyl bromide in EtOH under reflux, followed by treatment with NH3, gave N,3‐diaryl‐4‐phenyl‐1,3‐selenazol‐2(3H)‐imines 13 in high yields (Scheme 2). A reaction mechanism via formation of the corresponding Se‐(benzoylmethyl)isoselenoureas 18 and subsequent cyclocondensation is proposed (Scheme 3). The N,N′‐diarylselenoureas 16 were conveniently prepared by the reaction of aryl isoselenocyanates 15 with 4‐substituted anilines. The structures of 13a and 13c were established by X‐ray crystallography.  相似文献   

9.
Treatment of 2,2,4,4‐tetramethylcyclobutane‐1,3‐dione ( 6 ) in THF with CF3SiMe3 in the presence of tetrabutylammonium fluoride (TBAF) yielded the corresponding 3‐(trifluoromethyl)‐3‐[(trimethylsilyl)oxy]cyclobutanone 7 (Scheme 1) via nucleophilic addition of a CF anion at the CO group and subsequent silylation of the alcoholate. Under similar conditions, the ‘monothione' 1 reacted to give thietane derivative 8 (Scheme 2), whereas in the case of ‘dithione' 2 only the dispirodithietane 9 , the dimer of 2 , was formed (Scheme 3). A conceivable mechanism for the formation of 8 is the ring opening of the primarily formed CF3 adduct A followed by ring closure via the S‐atom (Scheme 2). In the case of thiobenzophenones 4 , complex mixtures of products were obtained including diarylmethyl trifluoromethyl sulfide 10 and 1,1‐diaryl‐2,2‐difluoroethene 11 (Scheme 4). Obviously, competing thiophilic and carbophilic addition of the CF anion took place. The reaction with 9H‐fluorene‐9‐thione ( 5 ) yielded only 9,9′‐bifluorenylidene ( 14 ; Scheme 6); this product was also formed when 5 was treated with TBAF alone. Treatment of 4a with TBAF in THF gave dibenzhydryl disulfide ( 15 ; Scheme 7), whereas, under similar conditions, 1 yielded the 3‐oxopentanedithioate 17 (Scheme 9). The reaction of dithione 2 with TBAF led to the isomeric dithiolactone 16 (Scheme 8), and 3 was transformed into 1,2,4‐trithiolane 18 (Scheme 10).  相似文献   

10.
The synthesis of 4,6,8-trimethyl-1-[(E)-4-R-styryl]azulenes 5 (R=H, MeO, Cl) has been performed by Wittig reaction of 4,6,8-trimethylazulene-1-carbaldehyde ( 1 ) and the corresponding 4-(R-benzyl)(triphenyl)phosphonium chlorides 4 in the presence of EtONa/EtOH in boiling toluene (see Table 1). In the same way, guaiazulene-3-carbaldehyde ( 2 ) as well as dihydrolactaroviolin ( 3 ) yielded with 4a the corresponding styrylazulenes 6 and 7 , respectively (see Table 1). It has been found that 1 and 4b yield, in competition to the Wittig reaction, alkylation products, namely 8 and 9 , respectively (cf. Scheme 1). The reaction of 4,6,8-trimethylazulene ( 10 ) with 4b in toluene showed that azulenes can, indeed, be easily alkylated with the phosphonium salt 4b . 4,6,8-Trimethylazulene-2-carbaldehyde ( 12 ) has been synthesized from the corresponding carboxylate 15 by a reduction (LiAlH4) and dehydrogenation (MnO2) sequence (see Scheme 2). The Swern oxidation of the intermediate 2-(hydroxymethyl)azulene 16 yielded only 1,3-dichloroazulene derivatives (cf. Scheme 2). The Wittig reaction of 12 with 4a and 4b in the presence of EtONa/EtOH in toluene yielded the expected 2-styryl derivatives 19a and 19b , respectively (see Scheme 3). Again, the yield of 19b was reduced by a competing alkylation reaction of 19b with 4b which led to the formation of the 1-benzylated product 20 (see Scheme 3). The ‘anil synthesis’ of guaiazulene ( 21 ) and the 4-R-benzanils 22 (R=H, MeO, Cl, Me2N) proceeded smoothyl under standard conditions (powered KOH in DMF) to yield the corresponding 4-[(E)-styryl]azulene derivatives 23 (see Table 4). In minor amounts, bis(azulen-4-yl) compounds of type 24 and 25 were also formed (see Table 4). The ‘anil reaction’ of 21 and 4-NO2C6H4CH=NC6H5 ( 22e ) in DMF yielded no corresponding styrylazulene derivative 23e . Instead, (E)-1,2-bis(7-isopropyl-1-methylazulen-4-yl)ethene ( 27 ) was formed (see Scheme 4). The reaction of 4,6,8-trimethylazulene ( 10 ) and benzanil ( 22a ) in the presence of KOH in DMF yielded the benzanil adducts 28 to 31 (cf. Scheme 5). Their direct base-catalyzed transformation into the corresponding styryl-substituted azulenes could not be realized (cf. Scheme 6). However, the transformation succeeded smoothly with KOH in boiling EtOH after N-methylation (cf. Scheme 6).  相似文献   

11.
Reaction of Ethyl Diazoacetate with 1,3-Thiazole-5(4H)-thiones Reaction of ethyl diazoacetate ( 2a ) and 1,3-thiazole-5(4H)-thiones 1a,b in Et2O at room temperature leads to a complex mixture of the products 5–9 (Scheme 2). Without solvent, 1a and 2a react to give 10a in addition to 5a–9a . In Et2O in the presence of aniline, reaction of 1a,b with 2a affords the ethyl 1,3,4-thiadiazole-2-carboxylate 10a and 10b , respectively, as major products. The structures of the unexpected products 6a, 7a , and 10a have been established by X-ray crystallography. Ethyl 4H-1,3-thiazine-carboxylate 8b was transformed into ethyl 7H-thieno[2,3-e][1,3]thiazine-carboxylate 11 (Scheme 3) by treatment with aqueous NaOH or during chromatography. The structure of the latter has also been established by X-ray crystallography. In the presence of thiols and alcohols, the reaction of 1a and 2a yields mainly adducts of type 12 (Scheme 4), compounds 5a,7a , and 9a being by-products (Table 1). Reaction mechanisms for the formation of the isolated products are delineated in Schemes 4–7: the primary cycloadduct 3 of the diazo compound and the C?S bond of 1 undergoes a base-catalyzed ring opening of the 1,3-thiazole-ring to give 10 . In the absence of a base, elimination of N2 yields the thiocarbonyl ylide A ′, which is trapped by nucleophiles to give 12 . Trapping of A ′, by H2O yields 1,3-thiazole-5(4H)-one 9 and ethyl mercaptoacetate, which is also a trapping agent for A ′, yielding the diester 7 . The formation of products 6 and 8 can be explained again via trapping of thiocarbonyl ylide A ′, either by thiirane C (Scheme 6) or by 2a (Scheme 7). The latter adduct F yields 8 via a Demjanoff-Tiffeneau-type ring expansion of a 1,3-thiazole to give the 1,3-thiazine.  相似文献   

12.
Treatment of 6,7‐diethoxy‐3,4‐dihydroisoquinoline ( 8 ) and its 1‐methyl derivative 12 with hydrazonoyl halides 10 in the presence of Et3N in THF under reflux afforded the corresponding 5,6‐dihydro‐1,2,4‐triazolo[3,4‐a]isoquinolines 11 and 13 , respectively, in high yield (Schemes 2 and 3). The products are formed via regioselective 1,3‐dipolar cycloaddition of the intermediate nitrilimines 9 with the isoquinoline C=N bond. Reaction of 6,7‐diethoxy‐3,4‐dihydroisoquinoline‐1‐acetonitrile ( 4a ) with ethyl α‐cyanocinnamates 15 in the presence of piperidine in refluxing MeCN yielded benzo[a]quinolizin‐4‐ones 16 (Scheme 4). Under the same conditions, 12 and arylidene malononitriles 19 reacted to give benzo[a]quinolizin‐4‐imines 20 (Scheme 5). Instead of 15 and 19 , mixtures of an aromatic aldehyde, and ethyl cyanoacetate or malononitrile, respectively, can be used in a one‐pot reaction.  相似文献   

13.
Synthesis of Trifluoromethyl-Substituted Sulfur Heterocycles Using 3,3,3-Trifluoropyruvic-Acid Derivatives The reaction of methyl 3,3,3-trifluoropyruvate ( 1 ) with 2,5-dihydro-1,3,4-thiadiazoles 4a, b in benzene at 45° yielded the corresponding methyl 5-(trifluoromethyl)-1,3-oxathiolane-5-carboxylates 5a, b (Scheme 1) via a regioselective 1,3-dipolar cycloaddition of an intermediate ‘thiocarbonyl ylide’ of type 3 . With methyl pyruvate, 4a reacted similarly to give 6 in good yield. Methyl 2-diazo-3,3,3-trifluoropropanoate ( 2 ) and thiobenzophenone ( 7a ) in toluene underwent a reaction at 50°; the only product detected in the reaction mixture was thiirane 8a (Scheme 2). With the less reactive thiocarbonyl compounds 9H-xanthene-9-thione ( 7b ) and 9H-thioxanthene-9-thione ( 7c ) as well as with 1,3-thiazole-5(4H)-thione 12 , diazo compound 2 reacted only in the presence of catalytic amounts of Rh2(OAc)4. In the cases of 7a and 7b , thiiranes 8b and 8c , respectively, were the sole products (Scheme 3). The crystal struture of 8c has been established by X-ray crystallography (Fig.). In the reaction with 12 , desulfurization of the primarily formed thiirane 14 gave the methyl 3,3,3-trifluoro-2-(4,5-dihydro-1,3-thiazol-5-ylidene)propanoates (E)-and (Z)- 15 (Scheme 4). A mechanism of the Rh-catalyzed reaction via a carbene addition to the thiocarbonyl S-atom is proposed in Scheme 5.  相似文献   

14.
Regioselective 1,3-Dipolar Cycloadditions of a ‘Thiocarbonyl-methanide’ ((Alkylidenesulfonio)methanide) with Aromatic Sulfines Reaction of the spirocyclic 2,5-dihydro-1,3,4-thiadiazole 7 and thiobenzophenone S-oxide ( 6a ) in THF at 45° yielded the spirocyclic 1,3-dithiolane 1-oxide 8 , thiirane 9 , and the diazane derivative 10 in a ratio of 61:15:23 (Scheme 2). The formation of 8 is rationalized by a 1,3-dipolar cycloaddition of ‘thiocarbonyl-methanide’ 1 , generated from 7 by thermal elimination of N2, and the C?S bond of sulfine 6a . Cyclization of intermediate 1 leads to thiirane 9 . Under the same conditions, 7 and adamantane-2-thione S-oxide ( 6b ) or 2,2,4,4-tetramethyl-3-thioxocyclobutanone S-oxide ( 4 ) reacted to give only 9 and 10 but no cycloadduct of type 8 (Scheme 4). With the aim to favor the formation of 8 , a mixture of 6a and 1.1 equiv. of 7 was heated to 45° without any solvent in a sealed tube. The ratio of products was only slightly different from that of the thermolysis in THF. An analogous experiment with 7 and 9H-fluorene-9-thione S-oxide ( 6c ) yielded cycloadduct 13 and 9 (Scheme 5). It is most interesting that the 1,3-dipolar cycloadditions of 1 and the sulfines 6a and 6c proceeded with different regioselectivity. A reaction mechanism for the unexpected formation of 10 is proposed in Scheme 7. The key step is the base-catalyzed ring opening of 7 and the nucleophilic addition of the thereby formed thiolate 21 onto the sulfonium ion 19 .  相似文献   

15.
The reactions of 1,4,5-trisubstituted imidazole 3-oxides 1a – k with cyclobutanethiones 5a , b in CHCl3 at room temperature give imidazole-2(3H)-thiones 9a – k in high yield. The second product formed in this reaction is 2,2,4,4-tetramethylcyclobutane-1,3-dione ( 6a ; Scheme 2). Similar reactions occur with 1 and adamantanethione ( 5c ) as thiocarbonyl compound, as well as with 1,2,4-triazole-4-oxide derivative 10 and 5a (Scheme 3). A reaction mechanism by a two-step formation of the formal cycloadduct of type 7 via zwitterion 16 is proposed in Scheme 5. Spontaneous decomposition of 7 yields the products of this novel sulfur-transfer reaction. The starting imidazole 3-oxides are conveniently prepared by heating a mixture of 1,3,5-trisubstituted hexahydro-1,3,5-triazines 3 and α-(hydroxyimino) ketones 2 in EtOH (cf. Scheme 1). As demonstrated in the case of 9d , a `one-pot' procedure allows the preparation of 9 without isolation of the imidazole 3-oxides 1 . The reaction of 1c with thioketene 12 leads to a mixture of four products (Scheme 4). The minor products, 9c and the ketene 15 , result from an analogous sulfur-transfer reaction (Path a in Scheme 5), whereas the parent imidazole 14 and thiiranone 13 are the products of an oxygen-transfer reaction (Path b in Scheme 5).  相似文献   

16.
The reaction of the enolizable thioketone (1R,4R)‐thiocamphor (= (1R,4R)‐1,7,7‐trimethylbicyclo[2.2.1]heptane‐2‐thione; 1 ) with (R)‐2‐vinyloxirane ( 2 ) in the presence of a Lewis acid such as SnCl4 or SiO2 in anhydrous CH2Cl2 gave the spirocyclic 1,3‐oxathiolane 3 with the vinyl group at C(4′), as well as the isomeric enesulfanyl alcohol 4 . In the case of SnCl4, an allylic alcohol 5 was obtained in low yield in addition to 3 and 4 (Scheme 2). Repetition of the reaction in the presence of ZnCl2 yielded two diastereoisomeric 4‐vinyl‐1,3‐oxathiolanes 3 and 7 together with an alcohol 4 , and a ‘1 : 2 adduct’ 8 (Scheme 3). The reaction of 1 and 2 in the presence of NaH afforded regioselectively two enesulfanyl alcohols 4 and 9 , which, in CDCl3, cyclized smoothly to give the corresponding spirocyclic 1,3‐oxathiolanes 3, 10 , and 11 , respectively (Scheme 4). In the presence of HCl, epimerization of 3 and 10 occurred to yield the corresponding epimers 7 and 11 , respectively (Scheme 5). The thio‐Claisen rearrangement of 4 in boiling mesitylene led to the allylic alcohol 12 , and the analogous [3,3]‐sigmatropic rearrangement of the intermediate xanthate 13 , which was formed by treatment of the allylic alcohol 9 with CS2 and MeI under basic conditions, occurred already at room temperature to give the dithiocarbonate 14 (Schemes 6 and 7). The presented results show that the Lewis acid‐catalyzed as well as the NaH‐induced addition of (R)‐vinyloxirane ( 2 ) to the enolizable thiocamphor ( 1 ) proceeds stereoselectively via an SN2‐type mechanism, but with different regioselectivity.  相似文献   

17.
The smooth reaction of 3‐chloro‐3‐(chlorosulfanyl)‐2,2,4,4‐tetramethylcyclobutanone ( 3 ) with 3,4,5‐trisubstituted 2,3‐dihydro‐1H‐imidazole‐2‐thiones 8 and 2‐thiouracil ( 10 ) in CH2Cl2/Et3N at room temperature yielded the corresponding disulfanes 9 and 11 (Scheme 2), respectively, via a nucleophilic substitution of Cl? of the sulfanyl chloride by the S‐atom of the heterocyclic thione. The analogous reaction of 3‐cyclohexyl‐2,3‐dihydro‐4,5‐diphenyl‐1H‐imidazole‐2‐thione ( 8b ) and 10 with the chlorodisulfanyl derivative 16 led to the corresponding trisulfanes 17 and 18 (Scheme 4), respectively. On the other hand, the reaction of 3 and 4,4‐dimethyl‐2‐phenyl‐1,3‐thiazole‐5(4H)‐thione ( 12 ) in CH2Cl2 gave only 4,4‐dimethyl‐2‐phenyl‐1,3‐thiazol‐5(4H)‐one ( 13 ) and the trithioorthoester derivative 14 , a bis‐disulfane, in low yield (Scheme 3). At ?78°, only bis(1‐chloro‐2,2,4,4‐tetramethyl‐3‐oxocyclobutyl)polysulfanes 15 were formed. Even at ?78°, a 1 : 2 mixture of 12 and 16 in CH2Cl2 reacted to give 13 and the symmetrical pentasulfane 19 in good yield (Scheme 5). The structures of 11, 14, 17 , and 18 have been established by X‐ray crystallography.  相似文献   

18.
Non-enolizable thioketones and 1,2-epoxycycloalkanes undergo a Lewis acid catalyzed addition reaction to give 1,3-oxathiolanes. Appropriate reaction conditions are CH2Cl2 as the solvent, BF3⋅Et2O as the Lewis acid, and a temperature between −78° and r.t. Under the reaction conditions, the 1,3-oxathiolanes are only moderately stable. They decompose to yield the corresponding epithiocycloalkane and ketone. In general, 1,3-dithiolanes are isolated as minor products or, after prolonged reaction, as the main product. These secondary products are formed via the Lewis acid catalyzed reaction of the intermediate epithiocycloalkane and a second molecule of the thioketone. In the reaction of thiobenzophenone and 1,2-epoxycyclohexane, trans-8,8-diphenyl-7,9-dioxabicyclo[4.3.0]nonane is formed in small amounts as an additional side product (Scheme 12). In all cases, the newly formed heterocycle and the carbocycle are trans-fused. This result is consistent with a nucleophilic ring-opening of the complexed oxirane by the thioketone via inversion of the configuration and subsequent formation of the O(1)−C(2) bond of the 1,3-oxathiolane (Scheme 13). The surprising formation of the fused 1,4-oxathiepan derivative 23 (Scheme 9) is in accordance with an ionic reaction mechanism (cf. Scheme 15).  相似文献   

19.
Formation of Methyl 5,6-Dihydro-l, 3(4H)-thiazine-4-carboxyiates from 4-Allyl-l, 3-thiazol-5(4H)-ones . The reaction of N-[1-(N, N-dimethylthiocarbamoyl)-1-methyl-3-butenyl]benzamid ( 1 ) with HCl or TsOH in MeCN or toluene yields a mixture of 4-allyl-4-methyl-2-phenyl-1,3-thiazol-5(4H)-one ( 5a ) and allyl 4-methyl-2-phenyl-1,3-thiazol-2-yl sulfide ( 11 ; Scheme 3). Most probably, the corresponding 1,3-oxazol-5(4H)-thiones B are intermediates in this reaction. With HCl in MeOH, 1 is transformed into methyl 5,6-dihydro-4,6-dimethyl-2-phenyl-1,3(4H)-thiazine-4-carboxylate ( 12a ). The same product 12a is formed on treatment of the 1,3-thiazol-5(4H)-one 5a with HCl in MeOH (Scheme 4). It is shown that the latter reaction type is common for 4-allyl-substituted 1,3-thiazol-5(4H)-ones.  相似文献   

20.
Uncatalyzed Sigmatropic 1,5-Shift of Acyl Groups in the Thermolysis of 5-Acyl-5-methyl-1,3-cyclohexadienes Four different 5-acyl-5-methyl-1,3-cyclohexadienes 1a–d (R = COOCH3, COCH3, COC6H5, CHO) have been shown to yield mixtures of 1,3-disubstituted cyclohexadienes 2–7 and 1,3-disubstituted aromatic product 8 upon thermolysis at 150–300° in solution and at 350–500° in the gas phase in a flow system. Two reaction pathways (A and B in Scheme 2) are considered for the rearrangement of the C-Skeleton. For the ester 1a 13C-isotopic substitution shows that products arise to 75–86% through a 1,5-sigmatropic shift of the methoxycarbonyl group ( A in Scheme 2) and to 14–25% through a sequence of reaction steps involving a 1,7-H-shift reaction in an acyclic intermediate ( B in Scheme 2). For the more reactive compounds 1b–d isomerization is assumed to follow the 1,5-sigmatropic pathway exclusively ( A in Scheme 2). A kinetic study yields the following sequence for the migration tendency of acyl groups toward sigmatropic 1,5-shift: COOCH3 < COCH3 < COC6H5 < CHO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号