首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zheng YQ  Lin JL  Xu W  Xie HZ  Sun J  Wang XW 《Inorganic chemistry》2008,47(22):10280-10287
Seven new glutaric acid complexes, Co(H 2O) 5L 1, Na 2[CoL 2] 2, Na 2[L(H 2L) 4/2] 3, {[Co 3(H 2O) 6L 2](HL) 2}.4H 2O 4, {[Co 3(H 2O) 6L 2](HL) 2}.10H 2O 5, {[Co 3(H 2O) 6L 2]L 2/2}.4H 2O 6, and Na 2{[Co 3(H 2O) 2]L 8/2].6H 2O 7 were obtained and characterized by single-crystal X-ray diffraction methods along with elemental analyses, IR spectroscopic and magnetic measurements (for 1 and 2). The [Co(H 2O) 5L] complex molecules in 1 are assembled into a three-dimensional supramolecular architecture based on intermolecular hydrogen bonds. Compound 2 consists of the Na (+) cations and the necklace-like glutarato doubly bridged [ C o L 4 / 2 ] 2 - infinity 1 anionic chains, and 3 is composed of the Na (+) cations and the anionic hydrogen bonded ladder-like [ L ( H 2 L ) 4 / 2 ] 2 - infinity 1 anionic chains. The trinuclear {[Co 3(H 2O) 6L 2](HL) 2} complex molecules with edge-shared linear trioctahedral [Co 3(H 2O) 6L 2] (2+) cluster cores in 4 and 5 are hydrogen bonded into two-dimensional (2D) networks. The edge-shared linear trioctahedral [Co 3(H 2O) 6L 2] (2+) cluster cores in 6 are bridged by glutarato ligands to generate one-dimensional (1D) chains, which are then assembled via interchain hydrogen bonds into 2D supramolecular networks. The corner-shared linear [Co 3O 16] trioctahedra in 7 are quaternate bridged by glutarato ligands to form 1D band-like anionic {[Co 3(H 2O) 2]L 8/2} (2+) chains, which are assembled via interchain hydrogen bonds into 2D layers, and between them are sandwiched the Na (+) cations. The magnetic behaviors of 1 and 2 obey the Curie-Weiss law with chi m = C/( T - Theta) with the Curie constant C = 3.012(8) cm (3) x mol (-1) x K and the Weiss constant Theta = -9.4(7) K for 1, as well as C = 2.40(1) cm (3) x mol (-1) x K and Theta = -2.10(5) K for 2, indicating weak antiferromagnetic interactions between the Co(II) ions.  相似文献   

2.
3.
Salicylidene-N-anilinoacetohydrazone (H(2)L(1)) and 2-hydroxy-1-naphthylidene-N-anilinoacetohydrazone (H(2)L(2)) and their iron(III), manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes have been synthesized and characterized by IR, electronic spectra, molar conductivities, magnetic susceptibilities and ESR. Mononuclear complexes are formed with molar ratios of 1:1, 1:2 and 1:3 (M:L). The IR studies reveal various modes of chelation. The electronic absorption spectra and magnetic susceptibility measurements show that the iron(III), nickel(II) and cobalt(II) complexes of H(2)L(1) have octahedral geometry. While the cobalt(II) complexes of H(2)L(2) were separated as tetrahedral structure. The copper(II) complexes have square planar stereochemistry. The ESR parameters of the copper(II) complexes at room temperature were calculated. The g values for copper(II) complexes proved that the Cu-O and Cu-N bonds are of high covalency.  相似文献   

4.
The bonding problem in borazine (B3N3H6), boroxine (B3O3H3), and carborazine (B2N2C2H6) is successfully addressed through the consideration of the excited states of the constituent fragments, namely BH( ), NH( ), and CH( ). We propose the participation of resonant structures for all three species that help to explain the experimental findings. A discussion on the chemical pattern of the parental molecule benzene (C6H6) helps to make coherent the whole bonding analysis on the titled species.  相似文献   

5.
We report computational studies on Al(+)(H(2)O)(n), and HAlOH(+)(H(2)O)(n-1), n = 6-14, by the density functional theory based ab initio molecular dynamics method, employing a planewave basis set with pseudopotentials, and also by conventional methods with Gaussian basis sets. The mechanism for the intracluster H(2) elimination reaction is explored. First, a new size-dependent insertion reaction for the transformation of Al(+)(H(2)O)(n), into HAlOH(+)(H(2)O)(n-1) is discovered for n > or = 8. This is because of the presence of a fairly stable six-water-ring structure in Al(+)(H(2)O)(n) with 12 members, including the Al(+). This structure promotes acidic dissociation and, for n > or = 8, leads to the insertion reaction. Gaussian based BPW91 and MP2 calculations with 6-31G* and 6-31G** basis sets confirmed the existence of such structures and located the transition structures for the insertion reaction. The calculated transition barrier is 10.0 kcal/mol for n = 9 and 7.1 kcal/mol for n = 8 at the MP2/6-31G** level, with zero-point energy corrections. Second, the experimentally observed size-dependent H(2) elimination reaction is related to the conformation of HAlOH(+)(H(2)O)(n-1), instead of Al(+)(H(2)O)(n). As n increases from 6 to 14, the structure of the HAlOH(+)(H(2)O)(n-1) cluster changes into a caged structure, with the Al-H bond buried inside, and protons produced in acidic dissociation could then travel through the H(2)O network to the vicinity of the Al-H bond and react with the hydride H to produce H(2). The structural transformation is completed at n = 13, coincident approximately with the onset of the H(2) elimination reaction. From constrained ab initio MD simulations, we estimated the free energy barrier for the H(2) elimination reaction to be 0.7 eV (16 kcal/mol) at n = 13, 1.5 eV (35 kcal/mol) at n = 12, and 4.5 eV (100 kcal/mol) at n = 8. The existence of transition structures for the H(2) elimination has also been verified by ab initio calculations at the MP2/6-31G** level. Finally, the switch-off of the H(2) elimination for n > 24 is explored and attributed to the diffusion of protons through enlarged hydrogen bonded H(2)O networks, which reduces the probability of finding a proton near the Al-H bond.  相似文献   

6.
7.
8.
9.
Pyridineselenolate forms stable homoleptic coordination compounds of Sn(II), Sn(IV), and Pb(II). The complexes can be prepared either by metathesis or by insertion of the metal into the Se-Se bond of dipyridyl diselenide, and they are soluble in coordinating solvents such as pyridine. Isolation of the Pb(II) complex from both Pb(0) and Pb(IV) starting materials indicates that the pyridineselenolate ligand cannot stabilize Pb(IV). The compounds all sublime intact and decompose at elevated temperatures: the divalent complexes give MSe (M = Sn, Pb), while the Sn(IV) compound delivers SnSe(2). In order to isolate a crystalline Pb compound, the 3-trimethylsilyl-2-pyridineselenolate ligand was prepared. Attachment of the Me(3)Si functional group increases compound solubility, and leads to the isolation of crystalline Pb(3-Me(3)Si-2-SeNC(5)H(4))(2). The structure of [Sn(2-SeNC(5)H(4))(2)](2) (1) was determined by single-crystal X-ray diffraction and shown to be a dimer, with one chelating pyridineselenolate per Sn(II) and a pair of pyridineselenolates that asymmetrically span the two metal centers to form an eight membered (-Sn-Se-C-N-Sn-Se-C-N-) ring, with weak Sn-Se interactions connecting the dimeric units. Crystal data for 1 (Mo Kalpha, 298(2) K): orthorhombic space group Pbca, a = 8.214(1) ?, b = 21.181(3) ?, c = 14.628(2) ?.  相似文献   

10.
The production yields of H(D) atoms in the reactions of N(2)(A (3)Sigma(u) (+)) with C(2)H(2), C(2)H(4), and their deuterated variants were determined. N(2)(A (3)Sigma(u) (+)) was produced by excitation transfer between Xe(6s[32](1)) and ground-state N(2) followed by collisional relaxation. Xe(6s[32](1)) was produced by two-photon laser excitation of Xe(6p[12](0)) followed by concomitant amplified spontaneous emission. H(D) atoms were detected by using vacuum-ultraviolet laser-induced fluorescence (LIF). The H(D)-atom yields were evaluated from the LIF intensities and the overall rate constants for the quenching, which were determined from the temporal profiles of the NO tracer emission. The absolute yields were evaluated by assuming that the yield for NH(3)(ND(3)) is 0.9. Although no HD isotope effects were observed in the overall rate constants, there were isotope effects in the H(D)-atom yields. The H-atom yields for C(2)H(2) and C(2)H(4) were 0.52 and 0.30, respectively, while the D-atom yields for C(2)D(2) and C(2)D(4) were 0.33 and 0.13, respectively. The presence of isotope effects in yields suggests that H(2)(D(2)) molecular elimination processes are competing and that molecular elimination is more dominant in deuterated species than in hydrides.  相似文献   

11.
12.
13.
The diamagnetic complexes [Pd2(H2L1)Cl4] (I), [Pd2(H2L2)Cl4] (II), and Pd2(H2L3)Cl4(III) with chiral ligands derived from the natural monoterpenoid (R)-(+)-limonene are obtained (H2 L1 is ethylenediamine dioxime, H2L2 is piperazine dioxime, and H2L3 is propylenediamine dioxime). According to X-ray diffraction data, the crystal structures of complexes I and II are composed of binuclear acentric molecules. The coordination polyhedra PdN2Cl2 are trapeziums (squares distorted in a tetrahedral manner) made up of two N atoms of the tetradentate bridging cyclic ligands H2L1 and H2L2 and two Cl atoms. The fragments PdCl2 are trans in the complexes. The 13C and 1H NMR spectra of complexes I and II in CDCl3 also suggest their binuclear structures.  相似文献   

14.
15.
16.
Density functional theory calculations have been carried out on the CO/H2 coadsorption on the (001), (110), and (100) surfaces of Fe5C2 for the understanding of the Fischer-Tropsch synthesis (FTS) mechanism. The stable surface species changes with the variation of the H2 and CO coverage. Along with dissociated hydrogen and adsorbed CO in 2-, 3-, and 4-fold configurations, methylidyne (C(s)H) (C(s), surface carbon), ketenylidene (C(s)CO), ketenyl (C(s)HCO), ketene (C(s)H2CO), and carbon suboxide (C(s)C2O2) are computed as thermodynamically stable surface species on Fe5C2(001) and Fe5C2(110) containing both surface iron and carbon atoms. These surface carbon species can be considered as the preliminary stages for FTS. On Fe5C2(100) with only iron atoms on the surface layer, the stable surface species is dissociated hydrogen and CO with top and 2-fold configurations. The bonding nature of these adsorbed carbon species has been analyzed.  相似文献   

17.
A series of fluorous derivatives of group 10 complexes MCl(2)(dppe) and [M(dppe)(2)](BF(4))(2) (M = Ni, Pd or Pt; dppe = 1,2-bis(diphenylphosphino)ethane) and cis-PtCl(2)(PPh(3))(2) was synthesized. The influence of para-(1H,1H,2H,2H-perfluoroalkyl)dimethylsilyl-functionalization of the phosphine phenyl groups of these complexes, as studied by NMR spectroscopy, cyclovoltammetry (CV), XPS analyses, as well as DFT calculations, points to a weak steric and no significant inductive electronic effect. The steric effect is most pronounced for M = Ni and leads in the case of NiCl(2)(1c) (3c) and [Ni(1c)(2)](BF(4))(2) (7c) (1c = [CH(2)P[C(6)H(4)(SiMe(2)CH(2)CH(2)C(6)F(13))-4](2)](2)) to a tetrahedral distortion from the expected square planar geometry. The solubility behavior of NiCl(2)[CH(2)P[C(6)H(4)(SiMe(3-b)(CH(2)CH(2)C(x)F(2x+1)b)-4](2)](2) (3: b = 1-3; x = 6, 8) in THF, toluene, and c-C(6)F(11)CF(3) was found to follow the same trends as those observed for the free fluorous ligands 1. A similar correlation between the partition coefficient (P) of complexes 3 and free 1 was observed in fluorous biphasic solvent systems, with a maximum value obtained for 3f (b = 3, x = 6, P = 23 in favor of the fluorous phase).  相似文献   

18.
Saturation molalities m(sat) in H2O(l) have been measured for the substances cytidine(cr), hypoxanthine(cr), thymidine(cr), thymine(cr), uridine(cr), and xanthine(cr) by using h.p.l.c. The states of hydration were established by performing Karl-Fischer analyses on samples of these substances, which had been allowed to equilibrate with their respective aqueous saturated solutions for several days at T≈298 K and then dried with air at T≈296 K for ≈24 h. The crystalline forms of the substances were identified by comparison of the results of X-ray diffraction measurements with results from the literature. Also, molar enthalpies of solution ΔsolHm(cal) for these substances were measured by using an isoperibol solution calorimeter. A self-association (stacking) model was used to estimate values of the activity coefficients γ and relative apparent molar enthalpies Lφ for these substances. These γ and Lφ values were used to adjust the measured values of m(sat) and ΔsolHm(cal) to the standard state and thus obtain values of the standard molar Gibbs free energy ΔsolGm and enthalpy changes ΔsolHm for the dissolution reactions of these substances. The values of the pKs and of the standard molar enthalpies of the ionization reactions were also used to account for speciation of the substances in the calculations of ΔsolGm and ΔsolHm. Values of standard molar enthalpies of formation ΔfHm, standard molar Gibbs free energies of formation ΔfGm, and standard partial molar entropies S2,m for the aqueous species of hypoxanthine and xanthine were calculated. A detailed summary and comparison of thermodynamic results from the literature for these substances is presented.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号