首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The zwitterionic intermediate generated from the reaction of triphenylphosphine with electron deficient acetylenic compounds was trapped by various NH acids. The synthesis resulted in a new class of highly functionalized heterocyclic compounds. Some of the reactions produced E and Z isomers. And the stability and transformation of them were studied by dynamic 1H NMR and density functional theory (DFT) calculations.  相似文献   

5.
Cyanuric acid (C3H3N3O3) is widely used as cross‐linker in basic polymers (often in combination with other crosslinking agents like melamine) but also finds application in more sophisticated materials such as in supramolecular assemblies and molecular sheets. The unknown phosphorus analogue of cyanuric acid, P3C3(OH)3, may become an equally useful building block for phosphorus‐based polymers or materials which have unique properties. 1 Herein we describe a straightforward synthesis of 2,4,6‐tri(hydroxy)‐1,3,5‐triphosphinine and its derivatives P3C3(OR)3 which have been applied as strong π‐acceptor η6‐ligands in piano stool Mo(CO)3 complexes.  相似文献   

6.
Do the twist : The reaction of in situ generated phosphinidenes with phosphaalkynes is a facile route to the new metal‐coordinated η3‐diphosphavinylcarbene 1 , which shows facile ligand‐exchange reactions and undergoes an unprecedented rearrangement that involves phosphinidene complex 2 and η3‐phosphaalkenylphosphinidene complex 3 , the 1,3 isomer of 1 .

  相似文献   


7.
8.
9.
10.
A well applicable preparative method for lithium perfluoroalkyltrimethoxyborates, Li[CnF2n+1B(OMe)3] (n = 3, 4, 6), was elaborated which is based on the reaction of B(OMe)3 with CnF2n+1Li generated from CnF2n+1H and t‐BuLi. Alternative perfluoroalkylation reactions of B(OMe)3 with perfluoropropyllithium generated from C3F7I and RLi, perfluoropropylmagnesium bromide, or perfluoropropyltrimethylsilane and potassium fluoride gave less satisfactory results for M[C3F7B(OMe)3]. The conversion of M[CnF2n+1B(OMe)3] salts (M = Li, BrMg) into K[CnF2n+1B(OMe)3] salts and basic properties of the new salts are reported.  相似文献   

11.
A new structural arrangement Te3(RPIII)3 and the first crystal structures of organophosphorus(III)–tellurium heterocycles are presented. The heterocycles can be stabilized and structurally characterized by the appropriate choice of substituents in Tem(PIIIR)n (m=1: n=2, R=OMes* (Mes*=supermesityl or 2,4,6‐tri‐tert‐butylphenyl); n=3, R=adamantyl (Ad); n=4, R=ferrocene (Fc); m=n=3: R=trityl (Trt), Mesor by the installation of a PV2N2 anchor in RPIII[TePV(tBuN)(μ‐NtBu)]2 (R=Ad, tBu).  相似文献   

12.
The Reactions of CH2=P(NMe2)3 with Fe(CO)5, Cr(CO)6, and CS2; Molecular Structures of [MeP(NMe2)3][(CO)5CrC(O)CH=P(NMe2)3], and (CO)4Fe=C(OMe)CH=P(NMe2)3 The ylide CH2=P(NMe2)3 ( 1 ) reacts with several binary transition metal carbonyls M(CO)x to produce the corresponding salt like compounds [MeP(NMe2)3][(CO)x–1MC(O)CH=P(NMe2)3] (M = Fe ( 3 ), Cr ( 4 )). The related reaction with CS2 leads to the salt [MeP(NMe2)3][SC(S)CH=P(NMe2)3] ( 2 ). While 4 is thermally stable, 3 rapidly decomposes at room temperature with formation of [MeP(NMe2)3]2[Fe2(CO)8] ( 8 ). Alkylation of 3 (at –50 °C) and 4 with MeSO3CF3 produces the related carbene complexes (CO)x–1M=C(OMe)CH=P(NMe2)3 ( 5 ) and ( 6 ); the reaction of 3 with Me3SiCl results in the formation of the carbene complex (CO)4Fe=C(OSiMe3)CH=P(NMe2)3 ( 7 ). 4 crystallizes in the space group P212121 (No. 19) with a = 1111.1(2), b = 1476.1(3), c = 1823.1(4) pm and Z = 4. 5 crystallizes in the space group P21/n (No. 14) with a = 1303.6(3), b = 910.5(4), c = 1627.0(4) pm, β = 96.06(2)° and Z = 4. The compounds have been characterized by elemental analyses, NMR (1H, 13C, 31P) and IR spectroscopy.  相似文献   

13.
Substitution Products of 4,4,6,6-Tetrachloro-6′-phenoxy-6′ -thioxo-cyclotriphosphazene-2-spiro-3′-cyclodi(phosphadiazane) Reactions of the spiro compound 4,4,6,6-Tetrachloro-6′-phenoxy-6′-thioxo-cyclotriphosphazene-2-spiro-3′-cyclodi(phosphadiazene) Cl4N3P3(NH? NH)2P(S)OC6 H5 with an excess of ammonia, cyclopropylamine, aziridine, and sodium phenolate were investigated. Fully or partially substitution of the chlorine atoms occurs. The reaction with two equivalents of the aziridine yields a mixture of isomers which consists of two geminal and two vicinal disubstituted products. The constitutions of the substituted compounds were confirmed by IR, NMR, MS and elemental analyses.  相似文献   

14.
15.
16.
Syntheses and NMR Spectroscopic Ivestigations of Salts containing the Novel Anions [PtXn(CF3)6‐n]2— (n = 0 ‐ 5, X = F, OH, Cl, CN) and Crystal Structure of K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O The first syntheses of trifluoromethyl‐complexes of platinum through fluorination of cyanoplatinates are reported. The fluorination of tetracyanoplatinates(II), K2[Pt(CN)4], and hexacyanoplatinates(IV), K2[Pt(CN)6], with ClF in anhydrous HF leads after working up of the products to K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O. The structure of the salt is determined by a X‐ray structure analysis, P21/c (Nr. 14), a = 11.391(2), b = 11.565(2), c = 13.391(3)Å, β = 90.32(3)°, Z = 4, R1 = 0.0326 (I > 2σ(I)). The reaction of [Bu4N]2[Pt(CN)4] with ClF in CH2Cl2 generates mainly cis‐[Bu4N]2[PtCl2(CF3)4] and fac‐[Bu4N]2[PtCl3(CF3)3], but in contrast that of [Bu4N]2[Pt(CN)6] with ClF in CH2Cl2 results cis‐[Bu4N]2[PtX2(CF3)4], [Bu4N]2[PtX(CF3)5] (X = F, Cl) and [Bu4N]2[Pt(CF3)6]. In the products [Bu4N]2[PtXn(CF3)6‐n] (X = F, Cl, n = 0—3) it is possibel to exchange the fluoro‐ligands into chloro‐ and cyano‐ligands by treatment with (CH3)3SiCl und (CH3)3SiCN at 50 °C. With continuing warming the trifluoromethyl‐ligands are exchanged by chloro‐ and cyano‐ligands, while as intermediates CF2Cl and CF2CN ligands are formed. The identity of the new trifluoromethyl‐platinates is proved by 195Pt‐ and 19F‐NMR‐spectroscopy.  相似文献   

17.
18.
19.
A systematic NMR study was performed on several alkyl–tetrazole complexes of iron(II) and zinc(II) in the 10–300 K temperature range. The experiments were designed to separate the electronic and reorientational phase transitions caused by the spin crossover of the iron compounds from those independent of unpaired electrons. The 19F spectral data on the propyl-tetrazole compounds show that the electronic spin-transition has a strong effect on the spectra, and their behavior can be explained as a combined response to molecular reorientations and the spin transition. For these complexes, second-moment calculations revealed the strength of the interaction between resonant and nonresonant nuclei. Both of the applied NMR methods show irregularities at the temperature region between 70 and 120 K, suggesting the presence of a phase transition. The data also suggest two kinds of reorientational behavior for the BF4 counter ions. In the iron–ethyl–tetrazole compound, unlike in the propyl–tetrazole complex, a significant amount of unpaired electrons remains in their original high-temperature HS state. Above their effect, the behavior of the nuclear spins of the iron compound is basically governed by the same structural factors as in its zinc analog. The two-exponential behavior of the 1H-T 1 in case of the zinc–methyl–tetrazole compound can be explained on the basis of cross relaxation with the 19F nuclei due to the low 1H/19F ratio. The presence of the two types of methyl reorientation is assumed to be the sign of the two different lattice sites known to be present in the FeII compound. The single-exponential T 1 above T c in the case of [Fe(mtz)6](BF4)2 is consistently the sign of the strength of the paramagnetic relaxation observed in the ethyl and propyl compounds.  相似文献   

20.
Redistribution reactions between diorganodiselenides of type [2‐(R2NCH2)C6H4]2Se2 [R = Et, iPr] and bis(diorganophosphinothioyl disulfanes of type [R′2P(S)S]2 (R = Ph, OiPr) resulted in the hypervalent [2‐(R2NCH2)C6H4]SeSP(S)R′2 [R = Et, R′ = Ph ( 1 ), OiPr ( 2 ); R = iPr, R′ = Ph ( 3 ), OiPr ( 4 )] species. All new compounds were characterized by solution multinuclear NMR spectroscopy (1H, 13C, 31P, 77Se) and the solid compounds 1 , 3 , and 4 also by FT‐IR spectroscopy. The crystal and molecular structures of 3 and 4 were determined by single‐crystal X‐ray diffraction. In both compounds the N(1) atom is intramolecularly coordinated to the selenium atom, resulting in T‐shaped coordination arrangements of type (C,N)SeS. The dithio organophosphorus ligands act monodentate in both complexes, which can be described as essentially monomeric species. Weak intermolecular S ··· H contacts could be considered in the crystal of 3 , thus resulting in polymeric zig‐zag chains of R and S isomers, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号