首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present results of a numerical study of turbulent droplet-laden channel flow with phase transition. Previous studies of the same system did not take into account the presence of gravity. Here, we do so introducing a thin film of water at the bottom wall and permitting droplets to fall into and merge with it. We treat the carrier phase with the Eulerian approach. Each droplet is considered separately in the Lagrangian formulation, adopting the point–particle approximation. We maintain the film thickness constant by draining water from the bottom wall to compensate for (a) the droplets that fall onto the film and (b) evaporation/condensation. We also maintain on average the total mass of water in the channel by inserting new droplets at the top wall to compensate for the water that has been drained from the bottom wall. We analyze the behavior of the statistically averaged gas and droplet quantities focusing on the heat exchange between the two phases. We increase (a) the initial droplet diameter keeping the same initial droplet volume fraction and (b) the initial number of droplets in the channel keeping their diameter the same. In both parameter studies we find that droplets grow less than in the reference case. In case (a) this is explained by the larger velocity with which they travel to the bottom wall and in case (b) by the lower rate of condensation of vapor due to the presence of neighboring droplets.  相似文献   

2.
A detailed numerical simulation of n-heptane droplets was carried out on a stationary three-dimensional configuration with complex geometry. The investigations focused on spray evaporation and dispersion within a carrier phase that featured operating conditions similar to those found in industrial applications, i.e. elevated pressure and temperature. The simulations were carried out using the Eulerian–Lagrangian approach with two-way coupling. There were two cases. The first dealt with spray characteristics within the preheated carrier phase without considering combustion. The second investigated the influence of combustion on droplet characteristics. Both cases had the same boundary conditions. The numerical simulations used two models to compute the progress variable mean reaction rate that governs the combustion process, which is captured by the Bray–Moss–Libby model.  相似文献   

3.
Dispersed water droplets are often seen in environmental air flows in rain, cloud, mist, sea spray and so on. It is therefore of great importance to precisely estimate heat transfer between water droplets and atmospheric air in developing a reliable climate model. The purpose of this study is to fabricate the measurement system for the temperature of a small water droplet in air flow under the controlled relative humidity condition and to investigate the effect of relative humidity on heat transfer across the surface of an evaporating water droplet in air flow. The results show that the droplet temperature decreases in the low-relative-humidity condition, whereas it increases in the high-relative-humidity condition. Nusselt number on the droplet surface is not affected by the relative humidity.  相似文献   

4.
This study is based on dynamic mesh refinement and uses spray breakup models to simulate engine spray dynamics. It is known that the Lagrangian discrete particle technique for spray modeling is sensitive to gird resolution. An adequate spatial resolution in the spray region is necessary to account for the momentum and energy coupling between the gas and liquid phases. This study uses a dynamic mesh refinement algorithm that is adaptive to spray particles to increase the accuracy of spray modeling. On the other hand, the accurate prediction of the spray structure and drop vaporization requires accurate physical models to simulate fuel injection and spray breakup. The present primary jet breakup model predicts the initial breakup of the liquid jet due to the surface instability to generate droplets. A secondary breakup model is then responsible for further breakup of these droplets. The secondary breakup model considers the growth of the unstable waves that are formed on the droplet surface due to the aerodynamic force. The simulation results are compared with experimental data in gasoline spray structure and liquid penetration length. Validations are also performed by comparing the liquid length of a vaporizing diesel spray and its variations with different parameters including the orifice diameter, injection pressure, and ambient gas temperature and density. The model is also applied to simulate a direct-injection gasoline engine with a realistic geometry. The present spray model with dynamic mesh refinement algorithm is shown to predict the spray structure and liquid penetration accurately with reasonable computational cost.  相似文献   

5.
This study compares experimental measurements and numerical simulations of liquid droplets over heated (to a near surface temperature of 423 K) and unheated cylinders. The numerical model is based on an unsteady Reynolds-averaged Navier–Stokes (RANS) formulation using a stochastic separated flow (SSF) approach for the droplets that includes submodels for droplet dispersion, heat and mass transfer, and impact on a solid surface. The details of the droplet impact model are presented and the model is used to simulate water spray impingement on a cylinder. Computational results are compared with experimental measurements using phase Doppler interferometry (PDI). Overall, good agreement is observed between predictions and experimental measurements of droplet mean size and velocity downstream of the cylinder.  相似文献   

6.
This paper presents a new predictive model of droplet flow and heat transfer from molten salt droplets in a direct contact heat exchanger. The process is designed to recover heat from molten CuCl in a thermochemical copper–chlorine (Cu–Cl) cycle of hydrogen production. This heat recovery occurs through the physical interaction between high temperature CuCl droplets and air. Convective heat transfer between droplets and air is analyzed in a counter-current spray flow heat exchanger. Numerical results for the variations of temperature, velocity and heat transfer rate are presented for two cases of CuCl flow. The optimal dimensions of the heat exchanger are found to be a diameter of 0.13 m, with a height of 0.6 and 0.8 m, for 1 and 0.5 mm droplet diameters, respectively. Additional results are presented and discussed for the heat transfer effectiveness and droplet solidification during heat recovery from the molten CuCl droplets.  相似文献   

7.
This paper presents a detailed numerical analysis of diesel engine spray structure induced by the Engine Combustion Network (ECN) Spray A at different injection pressures. The non-reacting simulations are performed using OpenFOAM where an Eulerian–Lagrangian model is adopted in the large eddy simulation (LES) framework. Effects of the LES mesh resolution as well as the spray model parameters are investigated with the focus on their impact on spray structure as the injection pressure varies. The predicted liquid and vapour penetration lengths agree well with the measurements at different injection pressures. The mixture fraction is well captured for the injection pressure of 100 and 150 MPa while a slight deviation from the measurements is observed for the injection pressure of 50 MPa near the nozzle. The parametric analysis confirms that the LES mesh resolution has significant effects on the results. A coarser mesh leads to higher liquid and vapour penetration lengths where the deviation from the measurements is larger, resulting in the highest error at the lowest injection pressure. As the mesh size increases, the droplet size distribution becomes narrower, its pick moves to the smaller droplet size and the probability of droplets with higher temperature increases. On the other hand, with increasing the mesh size, the carrier gas velocity decays slower and its radial dispersion decreases. It is found that the droplet characteristics are more affected by the mesh resolution when the injection pressure is the lowest while the opposite is true for the carrier phase. The number of Lagrangian particles also affects the droplet characteristics and the fuel-air mixing but their effects are not as significant as the mesh size. The results become less sensitive to the number of Lagrangian particles as the pressure injection decreases. Finally, the importance of the initial droplet size distribution is investigated, confirming its impact is marginal, particularly on the liquid length. It is observed that the initial droplet size is only important at very close to the nozzle and its impact on the spray structure becomes quickly insignificant due to the high rates of breakup and evaporation. This trend is consistent at different injection pressures.  相似文献   

8.
9.
One of the key design parameters in liquid/liquid extraction is the mass transfer coefficient. A complex list of parameters including fluid dynamics, drop size distribution, chemical properties of the involved species, local interfacial instabilities (Marangoni convection) is required in order to determine the transient evolution of the mass transfer coefficient. The influence of Marangoni convection on single drop mass transfer cannot yet be described in an analytical manner, and empirical correlations available in literature fail to predict the mass transfer process. In the present study, experimental investigations on deformable single droplets in the toluene/acetone/water system are presented which shows strong interfacial instabilities. Parameters varied are the drop diameter, the initial solute concentration and the mass transfer direction. Experimental results are compared with the well-known models by Kronig and Brink and Handlos and Baron. The Kronig and Brink model cannot describe Marangoni dominated systems, but comparisons reveal the influence of deformation on the mass transfer enhancement. In contrary, with a slight modification to the Handlos and Baron model, the mean droplet concentration of the transferred component was successfully modelled as a function of Fourier number.  相似文献   

10.
11.
In this paper we present a numerical model for the coarse-grid simulation of turbulent liquid jet breakup using an Eulerian–Lagrangian coupling. To picture the unresolved droplet formation near the liquid jet interface in the case of coarse grids we considered a theoretical model to describe the unresolved flow instabilities leading to turbulent breakup. These entrained droplets are then represented by an Eulerian–Lagrangian hybrid concept. On the one hand, we used a volume of fluid method (VOF) to characterize the global spreading and the initiation of droplet formation; one the other hand, Lagrangian droplets are released at the liquid–gas interface according to the theoretical model balancing consolidating and disruptive energies. Here, a numerical coupling was required between Eulerian liquid core and Lagrangian droplets using mass and momentum source terms. The presented methodology was tested for different liquid jets in Rayleigh, wind-induced and atomization regimes and validated against literature data. This comparison reveals fairly good qualitative agreement in the cases of jet spreading, jet instability and jet breakup as well as relatively accurate size distribution and Sauter mean diameter (SMD) of the droplets. Furthermore, the model was able to capture the regime transitions from Rayleigh instability to atomization appropriately. Finally, the presented sub-grid model predicts the effect of the gas-phase pressure on the droplet sizes very well.  相似文献   

12.
Improved numerical methods and physical models have been applied to droplet collision modeling. Numerically, an adaptive collision mesh method is developed to calculate collision rate. This method produces a collision mesh that is independent of the gas phase mesh and adaptively refined according to local parcel number density. An existing model describing the satellite droplet formation during the collision process is improved to reflect the experimental findings that the satellite droplets are much smaller than the parent droplets. The adaptive collision mesh and the improved satellite model have been used to simulate three impinging spray experiments. The model was able to qualitatively predict the occurrence of small satellite drops and bi-modal post-collision drop size distributions. The effect of the collision mesh and the satellite droplet model on a high-speed non-evaporating diesel spray is also assessed.  相似文献   

13.
The dynamics and the associated heat transfer process of butane droplets evaporating in water are investigated experimentally. New data are presented for the instantaneous growth, rise velocity and the heat transfer coefficient. The behaviour of the bubble-droplet, from the initial to the final stages of evaporation, is divided into four regions and is described with reference to similarities with the behaviour of a spherical droplet, spheroidal bubble-droplet, large spheroidal bubble and spherical cap bubble. The equations which represent the results for the heat transfer coefficient are given.  相似文献   

14.
Adding atomized liquid to air flowing around a cylinder gives an appreciable increase in heat transfer by forming a liquid film on the cylinder surface. The heat transfer coefficient depends upon the amount of liquid forming the film, which is limited by two phenomena: droplet deflection from the liquid film on the surface and droplets not striking the cylinder. This paper presents a method of calculating the quantity of liquid droplets settling on a cylinder surface in a gas-liquid spray flow. A coefficient k, the volume ratio of the liquid entering the film to the amount of liquid directed at the cylinder, is introduced. k values were calculated by means of numerical computation and the theory verified experimentally. The calculation method permits estimation of the dependence of the amount of liquid settling on a cylinder on the droplet diameter distribution parameters and on the linear gas velocity  相似文献   

15.
Large-eddy simulation of a turbulent reactive jet with and without evaporating droplets is performed to investigate the interactions among turbulence, combustion, heat transfer and evaporation. A hybrid Eulerian–Lagrangian approach is used for the gas–liquid flow system. Arrhenius-type finite-rate chemistry is employed for the chemical reaction. To capture the highly local interactions, dynamic procedures are used for all the subgrid-scale models, except that the filtered reaction rate is modelled by a scale similarity model. Various representative cases with different initial droplet sizes (St 0) and mass loading ratios (MLR) have been simulated, along with a case without droplets. It is found that compared with the bigger, slow responding droplets (St 0 = 16), smaller droplets (St 0 = 1) are more efficient in suppressing combustion due to their preferential concentration in the reaction zones. The peak temperature and intensity of temperature fluctuations are found to be reduced in all the droplet cases, to a varying extent depending on the droplet properties. Detailed analysis on the contributions of respective terms in a transport equation for grid-scale kinetic energy (GSKE) shows that the droplet evaporation effect on GSKE is small, while the droplet momentum effect depends on St 0. When the MLR is sufficiently high, the bigger (St 0 = 16) droplets can have profound influence on GSKE, and consequently on the formation and evolution of large-scale flow structures. On the other hand, the turbulence level is found to be lower in the droplet cases than in the pure flame case, due to the dissipative droplet dynamic effect.  相似文献   

16.
The Eulerian and Lagrangian approaches are used to perform a numerical study of the disperse phase dynamics, turbulence, and heat transfer in a turbulent gas-droplet flow in a tube with sudden expansion with the following ranges of two-phase flow parameters: initial droplet size d 1 = 0–200 µm and mass fraction of droplets M L1 = 0–0.1. The main difference between the Eulerian and Lagrangian approaches is the difference in the predictions of the droplet mass fraction: the Eulerian approach predicts a smaller value of M L both in the recirculation region and in the flow core (the difference reaches 15–20%). It is demonstrated that the disperse phase mass fraction calculated by the Lagrangian approach agrees better with measured data than the corresponding value predicted by the Eulerian approach.  相似文献   

17.
An axisymmetric boundary element method (BEM) has been developed to simulate atomization processes in a pressure-swirl atomizer. Annular ligaments are pinched from the parent sheet and presumed to breakup via the linear stability model due to Ponstein. Corrections to Ponstein’s result are used to predict satellite droplet sizes formed during this process. The implementation provides a first-principles capability to simulate drop size distributions for low viscosity fluids. Results show reasonable agreement with measured droplet size distributions and the predicted SMD is 30–40% smaller than experiment. The model predicts a large number of very small droplets that cannot typically be resolved in an experimental observation of the spray. A quasi-3-D spray visualization is presented by tracking droplets in a Lagrangian fashion from their formation point within the ring-shaped ligaments. A complete simulation is provided for a case generating over 80,000 drops.  相似文献   

18.
In gas turbine system with after fogging, water droplets are injected after compressor. After fogging could have more significant potential for enhancement of specific power production compared to inlet fogging alone, since a larger water injection rate is possible. Transient analysis of after fogging process is carried out by using a heat and mass transfer modeling on water droplet evaporation. Transient variables such as droplet diameter and air temperature are evaluated as the droplet evaporation proceeds for different values of initial droplet diameter, pressure ratio of compressor, and water injection ratio. The evaporation time for injected droplets are also estimated. Present results show that the evaporation time decreases sensitively with increasing pressure ratio or initial droplet diameter. However, the effect of water injection ratio on evaporation time is relatively insignificant unless water injection ratio is near the critical ratio.  相似文献   

19.
An experimental investigation was conducted to quantify the unsteady heat transfer and phase changing process within small icing water droplets in order to elucidate underlying physics to improve our understanding of the important micro-physical process of icing phenomena. A novel, lifetime-based molecular tagging thermometry (MTT) technique was developed and implemented to achieve temporally-and-spatially resolved temperature distribution measurements to reveal the time evolution of the unsteady heat transfer and dynamic phase changing process within micro-sized water droplets in the course of icing process. It was found that, after a water droplet impinged onto a frozen cold surface, the liquid water at the bottom of the droplet would be frozen and turned to solid ice rapidly, while the upper portion of the droplet was still in liquid state. As the time goes by, the interface between the liquid phase water and solid phase ice was found to move upward continuously with more and more liquid water within the droplet turned to solid ice. Interestingly, the averaged temperature of the remaining liquid water within the small icing droplet was found to increase, rather than decrease, continuously in the course of icing process. The temperature increase of the remaining liquid water is believed to be due to the heat release of the latent heat during solidification process. The volume expansion of the water droplet during the icing process was found to be mainly upward to cause droplet height growth rather than radial to enlarge the contact area of the droplet on the test plate. As a result, the spherical-cap-shaped water droplet was found to turn to a prolate-spheroid-shaped ice crystal with cusp-like top at the end of the icing process. The required freezing time for the water droplets to turn to ice crystals completely was found to depend on the surface temperature of the test plate strongly, which would decrease exponentially as the surface temperature of the frozen cold test plate decreases.  相似文献   

20.
Ethanol is identified as an interesting alternative fuel. In this regards, the predictive capability of combustion Large Eddy Simulation approach coupled to Lagrangian droplet dynamic model to retrieve the turbulent droplet dispersion, droplet size distribution, spray evolution and combustion properties is investigated in this paper for an ethanol spray flame. Following the Eulerian-Lagrangian approach with a fully two way coupling, the Favre-filtered low Mach number Navier-Stokes equations are solved on structured grids with dynamic sub-grid scale models to describe the turbulent carrier gas phase. Droplets are injected in polydisperse manner and generated in time dependent boundary conditions. They evaporate to form an air-fuel mixture that yields spray flame. Part of the ethanol droplets evaporates within the prevaporization area before reaching the combustion zone, making the flame to burn in a partially premixed regime. The chemistry is described by a tabulated detailed chemistry based on the flamelet generated manifold approach. The fuel, ethanol, is modeled by a detailed reaction mechanism consisting of 56 species and 351 reversible reactions. The simulation results including excess gas temperature, droplet velocities and corresponding fluctuations, droplet mean diameters and spray volume flux at different distances from the exit plane show good agreement with experimental data. Analysis of combustion spray features allows gaining a deep insight into the two-phase flow process ongoing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号