首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
β-Cryptoxanthin ( 1 ) was acetylated and then epoxidized with monoperoxyphthalic acid. After hydrolysis, repeated chromatography, and crystallization, (3S,5R,6S)-5,6-epoxy-β-cryptoxanthin ( 3 ), (3S,5S,6R)-5,6-epoxy-β-cryptoxanthin ( 4 ), (3R,5′R,6′R)-5′,6′-epoxy-β-cryptoxanthin ( 5 ), (3S,5R,6S,5′R,6′S)-5,6:5′,6′-diepoxy-β-cryp-toxanthin ( 6 ), and (3S,5S,6R,5′S,6′R)-5,6:5′,6′-diepoxy-β-cryptoxanthin ( 7 ) were isolated as main products and characterized by their UV/VIS, CD, 1H- and 13C-NMR, and mass spectra. The comparison of the carotenoid isolated from yellow, tomato-shaped paprika (Capsicum annuum var. lycopersiciforme flavum) with 3–5 strongly supports the structure of 3 for the natural product.  相似文献   

2.
Syntheses of Optically Active Carotenoids with 3,5,6-Trihydroxy-5,6-dihydro β-End Groups For the specification of the relative and absolute configuration in carotenoids with 3,5,6-trihydroxy-5-6-dihydro β-end groups, several ionone derivatives and carotenoids bearing this end group were synthesized. Acid-catalyzed hydrolysis of (3S,5S,6R)– acetoxy-5,6-epoxy-5,6-dihydro-β-ionone ( 7 ) and of its (3S,5R,6S)-isomer ( 13 ) gave the diols 8 and 15 , respectively, with exclusive inversion at c(5) (Scheme 2). Compared to this, mild acid hydrolysis of caroten-5-6-expoxides in the presence of H2O resulted in the formation of 5,6-diols with either inversion or retention of the configuration at C(6) (Scheme 3). Spectroscopic data allowed us to distinguish the relative configurations (3R*,5S*,6S*) (see A ), (3R*,5R*,6R*) (see B ), (3R*,5S*,6R*) (see C ), and (3R*,5R*,6S*) (see D ), of the 3,5,6-trihydroxy-5-6-dihydro β-end groups. Syntheses of the optically active carotene-hexols 20 and 21 and comparison with published data led to a revision of the structure of mectrazanthin (now formulated as 20 ), heteroxanthin (now formulated as 28 ), and further carotenoids with 3,5,6-trihydroxy end groups.  相似文献   

3.
The structure of 5-diazouracil and several closely related derivatives have been revised on the basis of pmr spectroscopy. 5-Diazouracil, 5-diazouracil hydrate, 5-diazouracil methanol adduct, 5-diazouridine and 5-diazo-2′-deoxyuridine have been reassigned the structures 5-diazopyrimidin-2,4(3H)dione (XI), 5-diazo-6-hydroxy-1,6-dihydropyrimidin-2,4(1H,3H,6H)dione (XIII), 5-diazo-6-methoxy-1,6-dihydropyrimidin-2,4(1H,3H,6H)dione (XII), 1 -(β-D-ribofuranosyl)-O5′ -6(S)cyclo-5-diazo-1,6-dihydropyrimidin-2,4(3H,6H)dione (XVII) and 1-(2-deoxy-β-D-ribofuranosyl)-O5′ -6(S)cyclo-5-diazo-1,6-dihydropyrimidin-2,4(3H,6H)dione (XIX), respectively. Treatment of XII with dimethylamine resulted in a coupling of the 5-diazo group with dimethylamine and a concomitant rearomatization of the heterocyclic ring by expulsion of the 6-methoxy group to furnish 5-(3,3-dimethyl-1-triazeno)uracil (XIV). A similar reaction of XIX and XVII with dimethylamine furnished the corresponding 5-(3,3-dimethyl-1-triazeno)derivatives. The effect which certain resonance hybrids of the diazo moiety may exert in reactions of the above hetero-cycles and the assignment of S configuration at C-6 for the nucleoside derivatives is also discussed.  相似文献   

4.
Facile synthesis of N‐(methyl and phenyl)‐Δ4‐isoxazolines via the reaction of (Z)‐N‐(methyl and phenyl)‐C‐arylnitrones with dimethyl acethylenedicarboxylate, DMAD, in ionic liquid is described. (Z)‐N‐methyl‐C‐arylnitrones afforded the high yield of N‐methyl‐Δ4‐isoxazolines 4a , 4b , 4c , 4d , 4e in ionic liquid, [bmim]BF4, at room temperature. However, the reaction of (Z)‐N‐phenyl‐C‐arylnitrones with DMAD afforded the mixtures of cis and trans isomers of related N‐phenyl‐Δ4‐isoxazolines ( 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j , 6a , 6b , 6c , 6d , 6e , 6f , 6g , 6h , 6i , 6j ) under these conditions. J. Heterocyclic Chem., (2012).  相似文献   

5.
Violaxanthin A (=(all‐E,3S,5S,6R,3′S,5′S,6′R)‐5,6 : 5′,6′‐diepoxy‐5,6,5′,6′‐tetrahydro‐β,β‐carotene‐3,3′‐diol =syn,syn‐violaxanthin; 5 ) and violaxanthin B (=(all‐E,3S,5S,6R,3′S,5′R,6′S)‐5,6 : 5′,6′‐diepoxy‐5,6,5′,6′‐tetrahydro‐β,β‐carotene‐3,3′‐diol=syn,anti‐violaxanthin; 6 ) were prepared by epoxidation of zeaxanthin diacetate ( 1 ) with monoperphthalic acid. Violaxanthins 5 and 6 were submitted to thermal isomerization and I2‐catalyzed photoisomerization. The structure of the main products, i.e., (9Z)‐ 5 , (13Z)‐ 5 , (9Z)‐ 6 , (9′Z)‐ 6 , (13Z)‐ 6 , and (13′Z)‐ 6 , was determined by their UV/VIS, CD, 1H‐NMR, 13C‐NMR, and mass spectra.  相似文献   

6.
Epoxidation of Cucurbitaxanthin A: Preparation of Cucurbitaxanthin B and of Its 5′,6′-Epimer Cucurbitaxanthin A (= (3S,5R,6R,3′S)-3,6-epoxy-5,6-dihydro-β,β-carotene-5,3′-diol; 1 ) isolated from red pepper (Capsicum annuum var. longum nigrum) was trimethylsiylated and then epoxidized with monoperphthalic acid. After deprotection and chromatographic separation, cucurbitaxanthin B (= (3S,5R,6R, 3′S,5′R,6′S)-3,6:5′,6′-diepoxy-5,6,5′,6′-tetrahydro-β,β-carotene-5,3′-diol; 2 ) and 5′,6′-diepicucurbitaxanthin B (= (3S,5R,6R, 3′S,5′S,6′R)-3,6:5′,6′-diepoxy-5,6,5′,6′-tetrahydro-β,β-carotene-5,3′-diol; 5 ) were obtained and carefully characterized. They show mirror-like CD spectra and, therefore, emphasize the importance of the torsion angle of C(6)–C(7) on the electronic interaction between the polyene chain and the chiral end group.  相似文献   

7.
Cucurbitaxanthin A (= (3S,5R,6R,3′R)-3,6-epoxy-5,6-dihydro-β,β- carotene-5,3′-diol; 5 ), cucurbitaxanthin B (= (3S,5R,6R,3′S,5′R,6′S)-3,6,5′, 6′-diepoxy-5,6,5′,6′-tetrahydro-β,β-carotene-5,3′-diol; 6 ), the epimeric cucurbitachromes 1 and 2 (= (3S,5R,6R,3′S,5′R,8′S)- and (3S,5R,6R,3′S,5′R,8′R)-3,6,5′, 8′-diepoxy-5,6,5′,6′-tetrahydro-β,β-carotene-5,3′-diol, resp.; 9/10 ), cycloviolaxanthin (= (3S,5R,6R,3′S,5′R,6′R)-3,6,3′, 6′-diepoxy-5,6,5′,6′-tetrahydro-β,κs-carotene-5,5′-diol; 8 ), and capsanthin 3,6-epoxide (= (3S,5R,6R,3′S,5′R)-3,6-epoxy-5,6-dihydro ?5,3′-dihydroxy-β,κ-caroten-6′-one; 7 ) were isolated from red spice paprika (Capsicum annuum var. longum) and characterized by their 1H- and 13C-NMR, mass, and CD spectra.  相似文献   

8.
(6′S)‐ and (6′R)‐‘Capsorubol‐6‐one' (=(3S,3′S,5R,5′R,6′S)‐ and (3S,3′S,5R,5′R,6′R)‐3,3′,6′‐trihydroxy‐κ,κ‐caroten‐6‐one; 8 and 9 , resp.), (6S,6′R)‐ and (6R,6′R)‐capsorubol (=3S,3′S,5R,5′R,6S,6′R)‐ and (3S,3′S,5R,5′R,6R,6′R)‐κ,κ‐carotene‐3,3′,6,6′‐tetrol; 11 and 12 , resp.) and (6′S)‐ and (6′R)‐cryptocapsol (=(3′S,5′R,6′S)‐ and (3′S,5′R,6′R)‐β,κ‐carotene‐3′,6′‐diol; 5 and 6 , resp.) were prepared in crystalline from by the reduction of capsorubin (=(3S,3′S,5R,5′R)‐3,3′‐dihydroxy‐κ,κ‐carotene‐6,6′‐dione; 7 ) and cryptocapsin (=(3′S,5′R)‐3′‐hydroxy‐β,κ‐caroten‐6′‐one; 4 ) and characterized by their UV/VIS, CD, 1H‐NMR, and mass spectra.  相似文献   

9.
Synthesis of (?)-(6R)- and (+)-(6S)-Tetrahydro-6-[(Z)-pent-2-enyl]-2H-Pyran-2-one, lactones from Jasminum grandiflorum L. and from Polianthes tuberosa L. (?)-(2S)-Ethyl 2-hydroxyhexanedioate ((2S)- 2 ) was obtained by kinetic resolution of racemic ethyl 2-hydroxy-hexanedioate with baker's yeast. The key intermediates (+)-(5R)- and (?)-(5S)-ethyl 5,6-epoxyhexanoate ((5R)- and (5S)- 6 , resp.) are proved to be useful synthons for the total synthesis of chiral 6-alkyl-δ-lactones, as exemplified by the preparation of both enantiomers of jasmine lactone ((6R)- and (6S)- 10 , resp.).  相似文献   

10.
Wittig olefination of (2S,3R,5S,6R)‐5‐(acetyloxy)‐tetrahydro‐6‐[(methoxymethoxy)methyl]‐3‐(phenylthio)‐ 2H‐pyran‐2‐acetaldehyde ((+)‐ 10 ) with {2‐[(2S,3R,4R,5R,6S)‐tetrahydro‐3,4,5‐tris(methoxymethoxy)‐6‐methyl‐ 2H‐pyran‐2‐yl]ethyl}triphenylphosphonium iodide ((?)‐ 11 ) gave a (Z)‐alkene derivative (+)‐ 12 that was converted into (αR,2R,3S,4R,5R,6S)‐tetrahydro‐α,3‐dihydroxy‐2‐(hydroxymethyl)‐5‐(phenylthio)‐6‐{(2Z)‐4‐[(2S,3S,4R,5S,6S)‐tetrahydro‐3,4,5‐trihydroxy‐6‐methyl‐2H‐pyran‐2‐yl]but‐2‐enyl}2H‐pyran‐4‐acetic acid ( 8 ), (αR,2R,3S,4R,6S)‐tetrahydro‐α,3‐dihydroxy‐2‐(hydroxymethyl)‐6‐{4‐[(2S,3S,4R,5S,6S)‐tetrahydro‐3,4,5‐trihydroxy‐6‐methyl‐2H‐pyran‐2‐yl]butyl}‐2H‐pyran‐4‐acetic acid ( 9 ), and simpler analogues without the hydroxyacetic side chain such as (2S,3S,4R,5S,6S)‐tetrahydro‐6‐methyl‐2‐{(2Z)‐4‐[(2S,3R,5S,6R)‐tetrahydro‐5‐hydroxy‐6‐(hydroxymethyl)‐3‐(phenylthio)‐2H‐pyran‐2‐yl]but‐2‐enyl}‐2H‐pyran‐3,4,5‐triol ( 30 ), (2S,3S,4R,5S,6S)‐tetrahydro‐6‐methyl‐2‐{[(2S,5S,6R)‐tetrahydro‐5‐hydroxy‐6‐(hydroxymethyl)‐2H‐pyran‐2‐yl]butyl}‐2H‐pyran‐3,4,5‐ triol ((?)‐ 41 ) and (2S,3S,4R,5S,6S)‐tetrahydro‐6‐methyl‐2‐{(2Z/E))‐4‐[(2R,5S,6R)‐tetrahydro‐5‐hydroxy‐6‐(hydroxymethyl)‐2H‐pyran‐2‐yl]but‐2‐enyl}‐2H‐pyran‐3,4,5‐triol ( 43 ). The key intermediates (+)‐ 10 and (?)‐ 11 were derived from isolevoglucosenone and from L ‐fucose, respectively. The following IC50 values were measured in a ELISA test for the affinities of sialyl Lewis x tetrasaccharide, 8, 9, 30 , (?)‐ 41 , and 43 toward P‐selectin: 0.7, 2.5–2.8, 7.3–8.0, 5.3–5.9, 5.0–5.2, and 3.4–4.1 mM , respectively.  相似文献   

11.
Caulerpenyne ( 1 ), the most abundant of the ecotoxicologically relevant sesquiterpenoids of the Mediterranean-adapted tropical green seaweed Caulerpa taxifolia, was found to react with Et3N or pyridine in MeOH by initial deprotection of C(1)HO to give oxytoxin 1 ( 2a ), previously isolated from the sacoglossan mollusc Oxynoe olivacea. With BuNH2, without any precaution to exclude light, 1 gave the series of racemic 3 and 4 , and achiral (4E,6E)- 5 , (4E,6Z)- 5 , (4Z,6E)- 5 , and (4Z,6Z)- 5 pyrrole compounds, corresponding to formal C(4) substitution, 4,5-β-elimination, and (E/Z)-isomerization at the C(4)?C(5) and C(6)?C(7) bonds. Changing to CDCl3 as solvent in the dark, 1 gave cleanly, via 2a as an intermediate, 3 and (4E,6E)- 5 . The latter proved to be prone to (E/Z)-photoisomerization. Under standard acetylation conditions, 3 gave (4E,6E)- 5 via acetamide 7 as an intermediate. Particular notice is warranted by selective deprotection of 1 at C(1), mimicking enzyme reactions, and unprecedented formation of pyrrole compounds from freely-rotating, protected 1,4-dialdehyde systems.  相似文献   

12.
Details of the direct synthesis of cationic Ru(II)(η5‐Cp)(η6‐arene) complexes from ruthenocene using microwave heating are reported. Developed for the important catalyst precursor [Ru(II)(η5‐Cp)(η6‐1‐4,4a,8a‐naphthalene)][PF6] reaction time could be shortened from three days to 15 min. The method was extended to [Ru(II)(η6‐benzene)(η5‐Cp)][PF6], [Ru(II)(η5‐Cp)(η6‐toluene)][PF6], [Ru(II)(η5‐Cp)(η6‐mesitylene)][PF6], [Ru(II)(η5‐Cp)(η6‐hexamethylbenzene)][PF6], [Ru(II)(η5Cp)(η6‐indane)][PF6], [Ru(II)(η5‐Cp)(η6‐2,6‐dimethylnaphthalene)][PF6], and [Ru(II)(η5‐Cp)(η6‐pyrene)][PF6]. 1‐methylnaphthalene and 2,3‐dimethylnaphthalene afforded mixtures of regioisomeric complexes. [Ru(Cp)(CH3CN)3][PF6], derived from the naphthalene precursor provided access to the cationic RuCp complexes of naphthoquinone, tetralindione, 1,4‐dihydroxynaphthalene, and 1,4‐dimethoxynaphthalene. Reduction of the tetralindione complex afforded selectively the endo,endo diol derivative. X‐Ray structures of five complexes are reported.  相似文献   

13.
Natural (+)-dactyloxene-B (12) and -C (13) have been synthesized starting from (+)-trans-2, 5, 6-trimethyl-l-cyclohexene-l-carbaldehyde (1) which is shown to have the (5S, 6R)-configuration by chemical correlation with (+)-(2R, 3S, 6S)-2, 3, 6-trimethylcyclohexanone. The absolute configurations are therefore (2R, 5R, 9S, 10R) for (+)-dactyloxene-B and (2R, 5S, 9S, 10R) for (+)-dactyloxene-C.  相似文献   

14.
Luteochrome isolated from the tubers of a white-fleshed variety of sweet potato (Ipomoea batatas LAM .) has been shown by HPLC, 1H-NMR and CD spectra to consist of a mixture of (5R,6S,5′R,8′R)- and (5R,6S,5′R,8′S)- 5,6:5′,8′-diepoxy-5,6,5′,8′-tetrahydro-β,β-carotene ( 1 and 2 , resp.). Therefore, its precursor is (5R,6S,5′R,6′S)-5,6:5′,6′-diepoxy-5,6,5′,6′-tetrahydro-β,β-carotene ( 4 ). This is the first identification of luteochrome as a naturally occurring carotenoid and, at the same time, gives the first clue to the as yet unknown chirality of the widespread β,β-carotene diepoxide. These facts demonstrate that the enzymic epoxidation of the β-end group occurs from the α-side, irrespective of the presence of OH groups on the ring.  相似文献   

15.
The isotope shift and hyperfine structure in a rhenium hollow cathode discharge was studied for transitions of the type 5d 56s7s 5d 56s6p and 5d 56s6d 5d 56s6p through Doppler-free saturation absorption laserspectroscopy and high resolution interferometry. Taking configuration mixing in the lower levels of 5d 56s6p under consideration, we obtain average configuration isotope shift values for 5d 56s7s of –1760(100) MHz and for 5d 56s6d of –1970(200) MHz. These experimental values compare extremely well with the theoretically predicted configuration isotope shifts in rhenium, based on pseudo-relativistic Hartree-Fock calculations, of –1710 MHz and –1940 MHz, resp. In addition hyperfine structure constants for rhenium levels of 5d 56s6d are reported here for the first time.Research scientist from the University of Istanbul, Turkey  相似文献   

16.
Reaction of rel-(4R,5R)-4-benzoylamino-5-phenyl-3-pyrazolidinone (4) with aromatic aldehydes 5a-f gave the corresponding (1Z)-rel-(4R,5R)-1-arylmethylene-4-benzoylamino-5-phenyl-3-pyrazolidinon-1-azomethinimines 6a-f . 1,3-Dipolar cycloadditions of azomethinimines 6a-f to various dipolarophiles, which were found to proceed regio- and stereo-selectively, afforded the corresponding pyrazolo[1,2-a]-pyrazoles 8a-f, 10 , and 13–16 . Reaction of azomethinimine 6a with hydrogen cyanide gave rel-(5R,6R)-6-benzoylamino-5,6-dihydro-3,5-diphenyl-1-oxo-1H,7H-pyrazolo[1,2-a][1,2,3]triazole (18) as a representative of a new ring system.  相似文献   

17.
Synthesis and Chirality of (5R, 6R)-5,6-Dihydro-β, ψ-carotene-5,6-diol, (5R, 6R, 6′R)-5,6-Dihydro-β, ε-carotene-5,6-diol, (5S, 6R)-5,6-Epoxy-5,6-dihydro-β,ψ-carotene and (5S, 6R, 6′R)-5,6-Epoxy-5,6-dihydro-β,ε-carotene Wittig-condensation of optically active azafrinal ( 1 ) with the phosphoranes 3 and 6 derived from all-(E)-ψ-ionol ( 2 ) and (+)-(R)-α-ionol ( 5 ) leads to the crystalline and optically active carotenoid diols 4 and 7 , respectively. The latter behave much more like carotene hydrocarbons despite the presence of two hydroxylfunctions. Conversion to the optically active epoxides 8 and 9 , respectively, is smoothly achieved by reaction with the sulfurane reagent of Martin [3]. These syntheses establish the absolute configurations of the title compounds since that of azafrin is known [2].  相似文献   

18.
The synthesis of 8-substituted and unsubstituted 6H,11H-indolo[3,2-c]isoquinolin-5-ones/thiones 3a-c and 4a-c and their derivatives viz, ethyl (8-substituted-6H,11H-indolo[3,2-c]isoquinolin-5-on-6-yl)acetates 5a-c , (8-substituted-6H,11H-indolo[3,2-c]isoquinolin-5-on-6-yl)acetyl hydrazides 6a-c , 3,5-disubstituted-pyrazoles 7a-c and 8a-c , 3-substituted-pyrazol-5-ones 9a-c and 5-(8-substituted-6H,11H-indolo[3,2-c]isoquinolin-5-on-6-yl)methyl-1,3,4-oxadiazole-2-thiones 10a-c , also ethyl (8-substituted-11H-indolo[3,2-c]isoquinolin-5-ylthio)ace-tates 11a-c , (8-substituted-11Hindolo[3,2-c]isoquinolin-5-ylthio)acetyl hydrazides 12a-c , 3,5-disubstituted-pyrazoles 13a-c and 14a-c , 3-substituted-pyrazol-5-ones 15a-c and 5-(8-substituted-11H-indolo[3,2-c]isoquin-olin-5-yl)thiomethyl-1,3,4-oxadiazole-2-thiones 16a-c is described.  相似文献   

19.
Mitsunobu displacement of (−)-(1S,4R,5S,6S)-4,5,6-tris{[(tert-butyl)dimethylsilyl]oxy}cyclohex-2-en-1-ol ((−)- 12 ; a (−)-conduritol-F derivative) with 4-ethyl-7-hydroxy-2H-1-benzopyran-2-one ( 16 ) provided a 5a-carba-β-D -pyranoside (+)- 17 that was converted into (+)-4-ethyl-7-[(1′R,4′R,5′S,6′R)-4′,5′,6′-trihydroxycyclohex-2′-en-1′-yloxy]-2H-1-benzopyran-2-one ((+)- 5 ) and (+)-4-ethyl-7-[(1′R,2′R,3′S,4′R)-2′,3′,4′-trihydroxycyclohexyloxy]-2H-1-benzopyran-2-one ((+)- 6 ). The 5a-carba-β-D -xyloside (+)- 6 was an orally active antithrombotic agent in the rat (venous Wessler's test), but less active than racemic carba-β-xylosides (±)- 5 and (±)- 6 . The 5a-carba-β-L -xyloside (−)- 6 was derived from the enantiomer (+)- 12 and found to be at least 4 times as active as (+)- 6 . (+)-4-Cyanophenyl 5-thio-β-L -xylopyranoside ((+)- 3 ) was synthesized from L -xylose and found to maintain ca. 50% of the antithrombotic activity of its D -enantiomer. Compounds (±)- 5 , (±)- 6 , and (−)- 6 are in vitro substrates for galactosyltransferase 1.  相似文献   

20.
Synthesis of (Methylthio)penam Derivatives via Keten Addition onto 4,5-Dihydro-5-(methylthio)-1,3-thiazoles The 4,5-dihydro-5-(methylthio)-2-phenyl-1,3-thiazoles 3a and 3b , easily prepared from the corresponding 1,3-thiazol-5(4H)-thiones and MeLi, react with dichloroacetyl chloride ( 5a ) and acidoacetyl chloride ( 5b ) in the presence of Et3N to give (methylthio)penam derivatives 6 (Table 1). The reaction mechanism is either a [2 + 2] cycloaddition of in situ generated ketene or a two-step reaction (Scheme 2). The structure of 6f has been confirmed by X-ray crystallography (Fig. 2). The relative configuration of 6a-e follow from comparison of their 1H-NMR spectra with those of 6f (Fig. 1). The 6-azidopenams 6d and 6f have been reduced to aminopenams 8a and 8b , respectively. Acylation of 8a with phenacetyl chloride yields 9 (Scheme 4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号