首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A systematic analysis of the molecular electrostatic potential (MEP) is presented. This study has been performed with a twofold purpose: first, to study the MEP dependence with regard to the quality of the basis set used to compute the ab initio SCF wavefunction and second, to develop and to assess a new strategy for computing isoelectrostatic potential maps using the semiempirical MNDO wavefunction. The only differences between this procedure and the ab initio SCF MEP computation lie in the freezing of the inner electrons and in the origin of the first-order density matrix. The statistical analysis of MEPs computed for a large number of molecules from MNDO wavefunction and ab initio SCF wavefunctions obtained using STO-3G, 4-31G, 6-31G, 4-31G*, 6-31G*, and 6-31G** basis sets points out the ability of any wavefunction to reproduce the general topological characteristics of the MEP surfaces. Nevertheless, split-valence basis sets including polarization functions are necessary to obtain accurate MEP minimum energy values. MNDO wavefunction tends to overestimate the MEP minima depth by a constant factor and shows an excellent ability to reflect the relative variation of MEP minima energies derived from a rather sophisticated (6-31G*) basis set, lacking of the shortcomings detected in the semiempirical CNDO approximation.  相似文献   

2.
In part I of this series, the PESP (parameterized electrostatic potential) method was described and applied to the calculation of electrostatic-potential-derived charges for a wide variety of organic and inorganic systems. Based on PRDDO/M wave functions and parameterized against ab initio MP2/6-31G** calculations, PESP is an order of magnitude faster than ab initio STO-3G calculations, while achieving a level of accuracy that rivals that of far more sophisticated ab initio methods. In this study, the application of the PESP method to the high potential regions of molecules containing H, C, N, O, F, P, S, Cl, and Br is described. For a collection of 48 molecules and 55 distinct lone pair minima, PESP yields the location and depth of lone pair minima to an average accuracy (relative to MP2/6-31G**) of 0.03 Å and 2.5 kcal/mol, respectively. Similarly, the location and well depths of minima in the π regions of organic molecules are calculated to an accuracy of 0.08 Å and 1.5 kcal/mol. PESP electrostatic potential maps are, in some cases, virtually indistinguishable from those obtained at the MP2/6-31G** level. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 : 1682–1693, 1997  相似文献   

3.
A new approach for the calculation of electrostatic potential derived atomic charges is presented. Based on molecular orbital calculations in the PRDDO/M approximation, the new parametrized electrostatic potential (PESP) method is parametrized against ab initio MP2/6-31G** calculations. For a data set of 820 atoms in 145 molecules containing H, C, N. O, F, P, S, Cl, and Br (including hypervalent species), the PESP method achieves a mean absolute error of 0.037 e with a correlation coefficient of 0.990. Unlike other approximate approaches, no scaling factor is required to improve the agreement between PESP charges and the underlying ab initio results. PESP calculations are an order of magnitude faster than the simplest ab initio calculation (STO-3G) on large molecules while achieving a level of accuracy that rivals much more elaborate ab initio methods. © 1997 by John Wiley & Sons, Inc. J Comput Chem 18: 955–969, 1997  相似文献   

4.
The geometries of acyclic and three-membered ring (nitroxide) H4C2NO radicals in their ground 2Π electronic states have been optimized completely at ab initio UHF and ROHF theoretical levels with the STO-3G and the 6-31G** basis sets. The optimizations favour the cyclic nitroxide structure energetically. However ΔE(acyclic - cyclic) at the UHF and ROHF/6-31G** levels are only 3.2 and 1.9 kcal mol-1, respectively. Incomplete MP2/6-311G** optimizations support these results. The zero-point energy computed at the ROHF/6-31G** level for the nitroxide radical is 2.5 kcal mol-1 higher than that for the acyclic structure, thus reversing the relative energies by 0.6 kcal mol-1. The energies of the two radical structures, relative to the sum of those for ethylene and NO, are very close to literature values of the activation energies for the thermal, NO catalyzed geometrical isomerizations of olefins. Thus cyclic nitroxide intermediates may play a role not only in the Hg 6(3P1) photosensitized, but also in the thermal, NO-catalyzed geometric isomerizations of olefins. Paper dedicated to Professor Otto P. Strausz; presented in part at the 75th Canadian Chemical Congress and Exhibition, Edmonton, May 31 – June 4, 1992.  相似文献   

5.
Aromatic-solvent-induced 11B NMR shifts (11B ASIS effects), observed for closo-2, 4-C2B5H7 and its 5-chloro and 5, 6-dichloro derivatives, are correlated to ab initio STO-3G derived atom charge densities. A near linear relationship is found upon incorporating nearestneighbor charge density contributions.  相似文献   

6.
Semiempirical CNDO, AM1, PM3 and ab initio HF/STO-3G, HF/3-21G(d), and HF/6-31(d) methods were employed in the geometry optimization of the phenothiazine and the corresponding radical cation. The results obtained from the PM3 performances were as good as those from the ab initio calculations in the structure optimization of both phenothiazine and phenothiazine radical cation. The PM3 method was used to optimize the structures of a series of N-substituted phenothiazine derivatives and their radical cations. The PM3-optimized results were then analyzed with the ab initio calculation at the 6-311G(d,p) level, which yielded the total energy, frontier molecular orbitals, dipole moments, and charge and spin density distributions of the phenothiazine derivatives and their radical cations.  相似文献   

7.
A new method is presented for approximate ab initio calculations in quantum chemistry. It is called CCAM (charge conserving approximation method). The calculation method does not include the use of empirical parameters. We use Slater type orbitals as basis set, replacing STO's by STO-2G functions to evaluate three- and four-center integrals and making the STO-2G two-orbital charge distributions have the same total charge as STO. The results are presented for test calculations on five molecules. In view of these results, CCAM is better than ab initio calculations over STO-6G in the results on total energies, kinetic energies and occupied orbital energies. In atomic populations, dipole moments and unoccupied orbital energies, CCAM is also satisfactory. We estimate that CCAM would be as fast as ab initio calculations over STO-2G in evaluating molecular integrals.  相似文献   

8.
Ab initio geometry optimization was carried out on 10 selected conformations of maltose and two 2‐methoxytetrahydropyran conformations using the density functional denoted B3LYP combined with two basis sets. The 6‐31G* and 6‐311++G** basis sets make up the B3LYP/6‐31G* and B3LYP/6‐311++G** procedures. Internal coordinates were fully relaxed, and structures were gradient optimized at both levels of theory. Ten conformations were studied at the B3LYP/6‐31G* level, and five of these were continued with full gradient optimization at the B3LYP/6‐311++G** level of theory. The details of the ab initio optimized geometries are presented here, with particular attention given to the positions of the atoms around the anomeric center and the effect of the particular anomer and hydrogen bonding pattern on the maltose ring structures and relative conformational energies. The size and complexity of the hydrogen‐bonding network prevented a rigorous search of conformational space by ab initio calculations. However, using empirical force fields, low‐energy conformers of maltose were found that were subsequently gradient optimized at the two ab initio levels of theory. Three classes of conformations were studied, as defined by the clockwise or counterclockwise direction of the hydroxyl groups, or a flipped conformer in which the ψ‐dihedral is rotated by ∼180°. Different combinations of ω side‐chain rotations gave energy differences of more than 6 kcal/mol above the lowest energy structure found. The lowest energy structures bear remarkably close resemblance to the neutron and X‐ray diffraction crystal structures. © 2000 John Wiley & Sons, Inc. * J Comput Chem 21: 1204–1219, 2000  相似文献   

9.
Bond orders and valence indices have been evaluated employing Mayer’s definitions with orthogonalized atomic orbitals (OAO) obtained from L?wdin orthogonalization over an STO-3G basis set in anab initio formalism. It has been observed that the eigenvalues of the submatrices associated with bond order orbitals. natural hybrid orbitals and natural bond orbitals also reproduce the same values of the bond orders and the valence indices which in turn are quite close to the classical values. Bond orders obtained by a similarity transformation of theab initio density matrix differ appreciably in numerical magnitude.  相似文献   

10.
11.
Quantum mechanical (ab initio and semiempirical) and force field calculations are reported for representative torsion potentials in several tetrahydropyran derivatives. The overall agreement between the various methods is quite good except that the AMBER torsion profiles are sensitive to the choice of atomic point charges. Using electrostatic potential (ESP) derived atomic point charges determined with the STO-3G basis set we find that AMBER is able to match the best quantum mechanical results quite well. However, when the point charges are derived using the 6-31G* basis set we find that scaling the intramolecular electrostatic nonbond interactions is necessary. AM1 does not work very well for these compounds when compared to the ab initio methods and, therefore, should only be used in cases when ab initio calculations would be prohibitive. Based upon our results we feel that any force field that makes use of 6-31G* ESP derived atomic point charges will need to scale intramolecular interactions. Implications of scaling intramolecular interactions to the development of force fields based on 6-31G* ESP derived atomic point charges are discussed. © 1992 by John Wiley & Sons, Inc.  相似文献   

12.
The structures and stabilities of a number of neutral and charged half-sandwich (pyramidal) and sandwich compounds, which obey the “electron octet” rule and contain hypercoordinate carbon, nitrogen, and oxygen atoms, were studied by ab initio MP2(full)/6-311+G** and density functional B3LYP/6-311+G** methods. Introduction of lithium counterions or bridging hydrogen atoms can provide an additional stabilization of non-classical systems with hypercoordinate centers.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 527–540, March, 2005.  相似文献   

13.
This paper presents an ab initio (RHF/6-31G** and MP2(full)6-31G**) and density functional (DFT) study of the structure and energetics of formation of an intermolecular complex which is the simplest model of an active center lysozyme with a substrate. The calculated energy of complex formation is 41.4 (RHF), 53.4 (MP2), and 52.7 kcal/mole (DFT). The proton transfer reaction is a concerted reaction having an energy barrier of 41.1 (RHF), 31.6 (MP2), and 25.3 (DFT) kcal/mole.  相似文献   

14.
The yield orotic aldehyde at the oxidation of 6-methyl-2,4-dihydroxypyrimidine was found to increase when selenious acid is used as an oxidizer. A comparative analysis of 6-methyl-2,4-dioxypyrimidine oxidation with selenium dioxide and selenious acid was performed using the ab initio quantum chemical method in the 6-31G** basis.  相似文献   

15.
Possible refinements of semiempirical methods include the use of larger basis sets and of correlated wave functions. These possibilities are investigated in semiempirical NDDO SCF calculations with the STO-3G and 4-31G basis sets, and in correlated calculations at the STO-3G level. The present approach is characterized by the analytical evaluation of all one-center terms and two-electron integrals, and the semiempirical adjustment of the remaining one-electron integrals and the nuclear repulsions. The NDDO SCF results tend to reproduce the correspondingab initio results more closely than experimental data, even if they are parametrized with respect to experiment. The explicit inclusion of electron correlation at the STO-3G level improves the calculated results only slightly.  相似文献   

16.
The conformational potential energy surface as a function of the two internal torsion angles in C-nitrosomethanol has been obtained using the semiempirical AM1 method. Optimized geometries are reported for the local minima on this surface and also for the corresponding points on the HF/6-31G, 6-31G*, and 6-31G** surfaces. All methods predict cis and trans minima which occur in degenerate pairs, each pair being connected by a transition state of Cs symmetry. The AM1 structures are found to compare well with the corresponding ab initio structures. Ab initio HF/6-31G and HF/6-31G* harmonic vibrational frequencies are reported for the cis and trans forms of nitrosomethanol. When scaled appropriately the calculated frequencies are found to compare well with experimental frequencies. The ab initio calculations predict the energy barrier for cis → trans isomerization to be between 5.8 and 6.5 kcal/mol with the trans → cis isomerization barrier lying between 2.3 and 6.5 kcal/mol. The corresponding AM1 energy barriers are around 1 kcal/mol lower in energy. The ab initio calculations predict the barrier to conversion between the two cis rotamers to be very small with the AM1 value being around 1 kcal/mol. Both AM1 and ab initio calculations predict interconversion between trans rotamers to require between 1.2 and 1.4 kcal/mol.  相似文献   

17.
High-level ab initio calculations have been performed on N-methyl-N-methyleneammonium and related compounds to obtain accurate rotational barriers, structures, and vibrational frequencies. The 6-31G** basis set has been utilized at the Hartree-Fock level of theory for these calculations because little experimental data are available. The MM2(91) and MM3(94) force fields have been parameterized to include these nonconjugated charged nitrogen-containing compounds. Molecular mechanics geometries and vibrational frequencies compare well with the ab initio results. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
Abstract

Reaction of 2-R-4-oxo-5,6-benzo-1,3,2-dioxaphosphorinanes I with chloral leading to formation of seven-membered heterocycles - 1,4,2-dioxaphosphepines is characterized by the high degree of stereoselectivity. We investigated the model reactions of 2-R-4-oxo-1,3,-dioxaphosphorin-5-enes with CX3CHO by PM3 and ab initio methods in STO-3G, 3-21G, 6-31G*, MP2/6-31G* basis set and also DFT method (B3LYP).  相似文献   

19.
20.
The PESP (Parameterized ElectroStatic Potential) method for calculating molecular electrostatic potentials, previously parameterized for H, C, N, O, F, P, S, Cl, and Br, is extended to molecules containing Li+, Na+, Mg2+, K+, Ca2+, Zn2+, and I. For a collection of 166 molecules containing 1668 atoms with at least one metal or iodine atom, PESP achieves an average absolute deviation in electrostatic potential-derived atomic charges of 0.042e compared with ab initio MP2/6-31G** calculations, with a correlation coefficient of 0.996. For a larger data set, consisting of 311 molecules encompassing all of the 16 elements just listed (2488 total atoms), PESP achieves an average absolute deviation of 0.040e and a correlation coefficient of 0.995. PESP calculations are an order of magnitude faster than the simplest ab initio method (STO-3G) on large molecules, while achieving a level of accuracy that rivals much more elaborate ab initio methods. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 1456–1469, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号