首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
A Skolem sequence of order n is a sequence S = (s1, s2…, s2n) of 2n integers satisfying the following conditions: (1) for every k ∈ {1, 2,… n} there exist exactly two elements si,Sj such that Si = Sj = k; (2) If si = sj = k,i < j then j ? i = k. In this article we show the existence of disjoint Skolem, disjoint hooked Skolem, and disjoint near-Skolem sequences. Then we apply these concepts to the existence problems of disjoint cyclic Steiner and Mendelsohn triple systems and the existence of disjoint 1-covering designs. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
It is shown that for m = 2d ? 1, 2d, 2d + 1, and d ≥ 1, the set {1, 2,…, 2m + 2}, ? {2,k} can be partitioned into differences d,d + 1,…,d + m ? 1 whenever (m,k) ≡ (0,0), (1,d + 1), (2, 1), (3,d) (mod (4,2)) and (d,m,k) ≠ (1,1,3), (2,3,7) (where (x,y) ≡ (u,ν) mod (m,n) iff xu (mod m) and yν (mod n)). It is also shown that if m ≥ 2d ? 1 and m ? [2d + 2, 8d ? 5], then the set {1, 2, …, 2m + 1} ? {k} can be partitioned into differences d,d + 1,…,d + m ? 1 whenever (m,k) ≡ (0, 1), (1,d), (2,0), (3,d + 1) mod (4,2). Finally, for d = 4 we obtain a complete result for when {1,…,2m + 1} ? {k} can be partitioned into differences 4,5,…,m + 3. © 2004 Wiley Periodicals, Inc.  相似文献   

3.
Ao and Hanson, and Guiduli, Gyárfás, Thomassé and Weidl independently, proved the following result: For any tournament score sequence S = (s1, s2, … ,sn) with s1s2 ≤ … ≤ sn, there exists a tournament T on vertex set {1,2, …, n} such that the score of each vertex i is si and the sub‐tournaments of T on both the even and the odd indexed vertices are transitive in the given order; that is, i dominates j whenever i > j and ij (mod 2). In this note, we give a much shorter proof of the result. In the course of doing so, we show that the score sequence of a tournament satisfies a set of inequalities which are individually stronger than the well‐known set of inequalities of Landau, but collectively the two sets of inequalities are equivalent. © 2001 John Wiley & Sons, Inc. J Graph Theory 38: 244–254, 2001  相似文献   

4.
It is shown that for m = 2d +5, 2d+6, 2d+7 and d ≥ 1, the set {1, …, 2m + 1} ? {k} can be partitioned into differences d, d + 1, …, d + m ? 1 whenever (m, k) ≡ (0, 1), (1, d), (2, 0), (3, d+1) (mod (4, 2)) and 1 ≤ k ≤ 2m+1. It is also shown that for m = 2d + 5, 2d + 6, 2d + 7, and d ≥ 1, the set {1, …, 2m + 2} ? {k, 2m + 1} can be partitioned into differences d, d + 1, … …, d + m ? 1 whenever (m, k) ≡ (0, 0), (1, d + 1), (2, 1), (3, d) (mod (4, 2)) and km + 2. These partitions are used to show that if m ≥ 8d + 3, then the set {1, … …, 2m+2}?{k, 2m+1} can be partitioned into differences d, d+1, …, d+m?1 whenever (m, k) ≡ (0, 0), (1, d+1), (2, 1), (3, d) (mod (4, 2)). A list of values m, d that are open for the existence of these partitions (which are equivalent to the existence of Langford and hooked Langford sequences) is given in the conclusion.  相似文献   

5.
The generalized Petersen graph GP (n, k), n ≤ 3, 1 ≥ k < n/2 is a cubic graph with vertex-set {uj; i ? Zn} ∪ {vj; i ? Zn}, and edge-set {uiui, uivi, vivi+k, i?Zn}. In the paper we prove that (i) GP(n, k) is a Cayley graph if and only if k2 ? 1 (mod n); and (ii) GP(n, k) is a vertex-transitive graph that is not a Cayley graph if and only if k2 ? -1 (mod n) or (n, k) = (10, 2), the exceptional graph being isomorphic to the 1-skeleton of the dodecahedon. The proof of (i) is based on the classification of orientable regular embeddings of the n-dipole, the graph consisting of two vertices and n parallel edges, while (ii) follows immediately from (i) and a result of R. Frucht, J.E. Graver, and M.E. Watkins [“The Groups of the Generalized Petersen Graphs,” Proceedings of the Cambridge Philosophical Society, Vol. 70 (1971), pp. 211-218]. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
Qk is the simple graph whose vertices are the k‐tuples with entries in {0, 1} and edges are the pairs of k‐tuples that differ in exactly one position. In this paper, we proved that there exists a Q5‐factorization of λKn if and only if (a) n ≡ 0(mod 32) if λ ≡ 0(mod 5) and (b) n ≡ 96(mod 160) if λ ? 0(mod 5).  相似文献   

7.
This paper continues recent investigations started in Dyukarev et al. (Complex anal oper theory 3(4):759–834, 2009) into the structure of the set Hq,2n 3 {\mathcal{H}_{q,2n}^{\ge}} of all Hankel nonnegative definite sequences, (sj)j=02n{(s_{j})_{j=0}^{2n}}, of complex q × q matrices and its important subclasses Hq,2n 3 ,e{\mathcal{H}_{q,2n}^{\ge,{\rm e}}} and ${\mathcal{H}_{q,2n}^>}${\mathcal{H}_{q,2n}^>} of all Hankel nonnegative definite extendable sequences and of all Hankel positive definite sequences, respectively. These classes of sequences arise quite naturally in the framework of matrix versions of the truncated Hamburger moment problem. In Dyukarev et al. (Complex anal oper theory 3(4):759–834, 2009) a canonical Hankel parametrization [(Ck)k=1n, (Dk)k=0n]{[(C_k)_{k=1}^n, (D_k)_{k=0}^n]} consisting of two sequences of complex q × q matrices was associated with an arbitrary sequence (sj)j=02n{(s_{j})_{j=0}^{2n}} of complex q × q matrices. The sequences belonging to each of the classes Hq,2n 3 , Hq,2n 3 ,e{\mathcal{H}_{q,2n}^{\ge}, \mathcal{H}_{q,2n}^{\ge,{\rm e}}}, and ${\mathcal{H}_{q,2n}^>}${\mathcal{H}_{q,2n}^>} were characterized in terms of their canonical Hankel parametrization (see, Dyukarev et al. in Complex anal oper theory 3(4):759–834, 2009; Proposition 2.30). In this paper, we will study further aspects of the canonical Hankel parametrization. Using the canonical Hankel parametrization [(Ck)k=1n, (Dk)k=0n]{[(C_k)_{k=1}^n, (D_k)_{k=0}^n]} of a sequence (sj)j=02n ? Hq,2n 3 {(s_{j})_{j=0}^{2n} \in \mathcal{H}_{q,2n}^{\ge}}, we give a recursive construction of a monic right (resp. left) orthogonal system of matrix polynomials with respect to (sj)j=02n{(s_{j})_{j=0}^{2n}} (see Theorem 5.5). The matrices [(Ck)k=1n, (Dk)k=0n]{[(C_k)_{k=1}^n, (D_k)_{k=0}^n]} will be expressed in terms of an arbitrary monic right (resp. left) orthogonal system with respect to (sj)j=02n{(s_{j})_{j=0}^{2n}} (see Theorem 5.11). This result will be reformulated in terms of nonnegative Hermitian Borel measures on \mathbbR{\mathbb{R}}. In this way, integral representations for the matrices [(Ck)k=1n, (Dk)k=0n]{[(C_k)_{k=1}^n, (D_k)_{k=0}^n]} will be obtained (see Theorem 6.9). Starting from the monic orthogonal polynomials with respect to some classical probability distributions on \mathbbR{\mathbb{R}}, Theorem 6.9 is used to compute the canonical Hankel parametrization of their moment sequences. Moreover, we discuss important number sequences from enumerative combinatorics using the canonical Hankel parametrization.  相似文献   

8.
《Quaestiones Mathematicae》2013,36(4):383-398
Abstract

A set B of vertices of a graph G = (V,E) is a k-maximal independent set (kMIS) if B is independent but for all ?-subsets X of B, where ? ? k—1, and all (? + 1)-subsets Y of V—B, the set (B—X) u Y is dependent. A set S of vertices of C is a k-maximal clique (kMc) of G iff S is a kMIS of [Gbar]. Let βk, (G) (wk(G) respectively) denote the smallest cardinality of a kMIS (kMC) of G—obviously βk(G) = wk([Gbar]). For the sequence m1 ? m2 ?…? mn = r of positive integers, necessary and sufficient conditions are found for a graph G to exist such that wk(G) = mk for k = 1,2,…,n and w(G) = r (equivalently, βk(G) = mk for k = 1,2,…,n and β(G) = r). Define sk(?,m) to be the largest integer such that for every graph G with at most sk(?,m) vertices, βk(G) ? ? or wk(G) ? m. Exact values for sk(?,m) if k ≥ 2 and upper and lower bounds for s1(?,m) are de termined.  相似文献   

9.
10.
We consider the class of I-graphs, which is a generalization of the class of the generalized Petersen graphs. We show that two I-graphs I(n, j, k) and I(n, j 1, k 1) are isomorphic if and only if there exists an integer a relatively prime to n such that either {j 1, k 1} =? {a j mod n, a k mod n } or {j 1, k 1} =? {a j mod n, ? a k mod n }. This result has an application in the enumeration of non-isomorphic I-graphs and unit-distance representations of generalized Petersen graphs.  相似文献   

11.
In 1975, Richard M. Wilson proved: Given any positive integers k ? 3 and λ, there exists a constant v0 = v0(k, λ) such that v ? B(k,λ) for every integer v ? v0 that satisfies λ(v ? 1) ≡ 0(mod k ? 1) and λv(v ? 1) ≡ 0[mod k(k ? 1)]. The proof given by Wilson does not provide an explicit value of v0. We try to find such a value v0(k, λ). In this article we consider the case λ = 1 and v ≡ 1[mod k(k ? 1)]. We show that: if k ? 3 and v = 1[mod k(k ? 1)] where v > kkk5, then a B(v,k, 1) exists. © 1995 John Wiley & Sons, Inc.  相似文献   

12.
《Optimization》2012,61(5):729-745
We consider mixed-integer sets of the form X = {(s, y) ∈ ?+ × ? n : s + a j y j b j , ?jN}. A polyhedral characterization for the case where X is defined by two inequalities is provided. From that characterization we give a compact formulation for the particular case where the coefficients of the integer variables can take only two possible integer values a 1, a 2 ∈ ?+ : X n,m = {(s, y) ∈ ?+ × ? n+m : s + a 1 y j b j , ?jN 1, s + a 2 y j b j , jN 2} where N 1 = {1, …, n}, N 2 = {n + 1, …, n + m}. In addition, we discuss families of facet-defining inequalities for the convex hull of X n,m .  相似文献   

13.
We propose a method to determine the solvability of the diophantine equation x2-Dy2=n for the following two cases:(1) D = pq,where p,q ≡ 1 mod 4 are distinct primes with(q/p)=1 and(p/q)4(q/p)4=-1.(2) D=2p1p2 ··· pm,where pi ≡ 1 mod 8,1≤i≤m are distinct primes and D=r2+s2 with r,s ≡±3 mod 8.  相似文献   

14.
In this article we prove the following theorem. For any k ≥ 3, let c(k, 1) = exp{exp{kk2}}. If v(v − 1) ≡ 0 (mod k(k −1)) and v − 1 ≡ 0 (mod k−1) and v > c(k, 1), then a B(v,k, 1) exists. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
If S is a collection of circuits in a graph G, the circuits in S are said to be consistently orientable if G can be oriented so that they are all directed circuits. If S is a set of three or more consistently orientable circuits such that no edge of G belongs to more than two circuits of S, then S is called a ring if there exists a cyclic ordering C0, C1,…, Cn ? 1, C0 of the n circuits in S such that ECi ? ECj ≠ ? if and only if j = i or ji ? 1 (mod n) or ji + 1 (mod n). We characterise planar cubic graphs in terms of the non-existence of a ring with certain specified properties.  相似文献   

16.
Let K = {k1,…,kr} and L = {l1,…,ls} be two sets of non-negative integers and assume ki > lj for every i,j. Let F be an L-intersecting family of subsets of a set of n elements. Assume the size of every set in F is a number from K. We conjecture that |F| ? (ns). We prove that our conjecturer is true for any K. (with min ki ? s) when L = {0,1,…,s ? 1}. We also show that for any K and any L, (with min ki > max lj) CALLING STATEMENT : © 1995 John Wiley & Sons, Inc.  相似文献   

17.
An = An(?) denotes the unique left distributive binary system on {0, 1,…,2n?1) that satisfies a ? 1 = a + 1 mod 2nfor all a ? An, and on(a) = k indicates the period 2kof a ? An (if b,c ? An, then a ? b = a ? c iff b ‵ c mod 2kand if 0 < b < c < 2kthen a < a ? b < a ? c). Amongs others, we prove that ot2(2t?2) ≤ t holds for every integer t ≥ 2, the equality taking place iff t is of the form 22? for an integer s ≥ 0.  相似文献   

18.
The main theorem of that paper is the following: let G be a graph of order n, of size at least (n2 - 3n + 6)/2. For any integers k, n1, n2,…,nk such that n = n1 + n2 +. + nk and ni ? 3, there exists a covering of the vertices of G by disjoint cycles (Ci) =l…k with |Ci| = ni, except when n = 6, n1 = 3, n2 = 3, and G is isomorphic to G1, the complement of G1 consisting of a C3 and a stable set of three vertices, or when n = 9, n1 = n2 = n3 = 3, and G is isomorphic to G2, the complement of G2 consisting of a complete graph on four vertices and a stable set of five vertices. We prove an analogous theorem for bipartite graphs: let G be a bipartite balanced graph of order 2n, of size at least n2 - n + 2. For any integers s, n1, n2,…,ns with ni ? 2 and n = n1 + n2 + ? + ns, there exists a covering of the vertices of G by s disjoint cycles Ci, with |Ci| = 2ni.  相似文献   

19.
Let F be a field and let {d 1,…,dk } be a set of independent indeterminates over F. Let A(d 1,…,dk ) be an n × n matrix each of whose entries is an element of F or a sum of an element of F and one of the indeterminates in {d 1,…,dk }. We assume that no d 1 appears twice in A(d 1,…,dk ). We show that if det A(d 1,…,dk ) = 0 then A(d 1,…,dk ) must contain an r × s submatrix B, with entries in F, so that r + s = n + p and rank B ? p ? 1: for some positive integer p.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号