首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The title compound, [Ce(NO3)3(C2H6O)(C18H15OP)2], contains discrete mol­ecules with nine‐coordinate Ce atoms having all nitrate groups bonded as symmetrical bidentate ligands [Ce—O(P) 2.369 (2) and 2.385 (2), Ce—O(N) 2.549 (3)–2.596 (3) and Ce—O(Et) 2.515 (3) Å].  相似文献   

3.
The structure of the title compound, Na2[Zn(C6H11O2)4], consists of two‐dimensional polymeric sheets. The Zn2+ ions are approximately tetrahedrally coordinated by O atoms from different hexanoate anions. Both Na+ ions are six‐coordinated by carboxyl­ate O atoms. One of the hexanoate O atoms is attached to one Zn2+ ion and one Na+ ion, and the remaining O atom is attached to two Na+ ions.  相似文献   

4.
The hydro­thermal reaction of cobalt(II) chloride with trimesate (3,5‐di­carboxy­benzoate) ions in aqueous solution gives the novel title complex, [Co(C9H5O6)2(H2O)4]. The CoII ion lies on an inversion centre and is octahedrally coordinated to two trimesate anions and four water mol­ecules. Hydro­gen bonds ensure the three‐dimensional architecture of the structure.  相似文献   

5.
The title compound, [Cu(C6H2Br3O)2(NH3)2], a monomeric centrosymmetric CuII complex, crystallizes in the monoclinic system. The CuO2N2 coordination sphere is trans planar, [Cu—O 1.943 (5) Å and Cu—N 1.977 (6) Å], with the fifth and sixth coordination sites occupied by Br atoms from the phenoxide ions [Cu—Br 3.129 (1) Å], resulting in an elongated distorted octahedral structure for the CuO2N2Br2 coordination. Each of the NH3 groups forms two hydrogen bonds with the Br and O atoms of the CuO2N2Br2 moiety of a neighbouring mol­ecule. This arrangement constitutes a one‐dimensional chain along the x axis of the unit cell.  相似文献   

6.
The title compound, [Fe(C7H5O2)2(CH4O)4], is a centrosymmetric six‐coordinate FeII complex coordinated by two axial monodentate benzoate ligands and four methanol ligands in the equatorial plane [Fe—Obenzoate 2.0935 (7) Å, and Fe—Omethanol 2.1310 (7) and 2.1290 (7) Å]. The benzoate ligands adopt monodentate ligation, rather than a bridged polymeric structure, because of strong intra‐ and intermolecular hydrogen bonds to the methanol ligands. This structure is nearly identical to that obtained with a much bulkier carboxyl­ate ligand [Chavez, Que & Tolman (2001). Chem. Commun. pp. 111–112].  相似文献   

7.
8.
In the title compound, [Y(C6H3N2O5)3(H2O)3], the Y atom is nine‐coordinate with a slightly distorted tricapped trigonal prismatic coordination geometry. The YIII ion is coordinated to three bidentate 2,6‐di­nitro­phenolate ligands and three water mol­ecules. The Y—O bond distances are in the range 2.217 (3)–2.754 (4) Å, with the Y—O distances from the nitro groups being longer than those from the water mol­ecules and the phenol groups. The coordinated NO2 groups are almost coplanar with the benzene rings.  相似文献   

9.
The synthesis and structure of the title compound, (C24H20P)2[Ge(C2O4)3], are reported. The PPh4+ cations in the structure form infinite zigzag chains in which the P?P distances alternate between 6.229 (1) and 7.118 (1) Å, and the P?P?P angle is 131.4 (1) Å. The shorter P?P distance is associated with a sixfold phenyl embrace. However, the longer P?P distance is associated with both phenyl–phenyl interactions and interactions between the cations and a twofold symmetric [Ge(C2O4)3]2? anion. In the cation–anion interactions, the P?O distance is 4.444 (2) Å, the O?P—Cdistal angle is 175.0 (1)° and the shortest H?O distances are 2.74 and 3.09 Å.  相似文献   

10.
11.
The title compound, Cs3[Cr(C2O4)3]·2H2O, has been synthesized for the first time and the spatial arrangement of the cations and anions is compared with those of the other members of the alkali metal series. The structure is built up of alternating layers of either the d or l enantiomers of [Cr(oxalate)3]3−. Of note is that the distribution of the [Cr(oxalate)3]3− enantiomers in the Li+, K+ and Rb+ tris(oxalato)chromates differs from those of the Na+ and Cs+ tris(oxalato)chromates, and also differs within the corresponding BEDT‐TTF [bis(ethylenedithio)tetrathiafulvalene] conducting salts. The use of tris(oxalato)chromate anions in the crystal engineering of BEDT‐TTF salts is discussed, wherein the salts can be paramagnetic superconductors, semiconductors or metallic proton conductors, depending on whether the counter‐cation is NH4+, H3O+, Li+, Na+, K+, Rb+ or Cs+. These materials can also be superconducting or semiconducting, depending on the spatial distribution of the d and l enantiomers of [Cr(oxalate)3]3−.  相似文献   

12.
In the structure of the title compound, [VO(C2O4)(H2O)3]·2H2O, the V atom of the oxovanadium(IV) cation is coordinated to one bidentate oxalate anion and three water mol­ecules, resulting in a neutral complex. Two more water mol­ecules are not coordinated to the V atoms but are involved in the hydrogen‐bonding network, which consists of ten different hydrogen bonds.  相似文献   

13.
The title compound, [ZnCl2(C5H9NO2)2], crystallizes in the centrosymmetric space group C2/c with the Zn atom on a twofold axis. The two proline residues in any one complex thus have the same absolute configuration. Hydrogen bonding links the mol­ecules into linear chains, which run in the crystallographic b direction. The proline residues within any one chain also have an identical absolute configuration.  相似文献   

14.
Crystal Structure of Sr(BrO3)2 · H2O, Ba(BrO3)2 · H2O, Ba(IO3)2 · H2O, Pb(ClO3)2 · H2O, and Pb(BrO3)2 · H2O The crystall structures of the isostructural halates Sr(BrO3)2 · H2O, Ba(BrO3)2 · H2O, Ba(IO3)2 · H2O, Pb(ClO3)2 · H2O, and Pb(BrO3)2 · H2O were determined using X-ray single crystal data (monoclinic space group C2/c? C, Z = 4), The mean bond lengths and bond angles of the halate ions in the Ba(ClO3)2 · 1 H2O-type compounds, which correspond to those of other halates, are Cl? O, 149.0, Br? O, 165.9, I? O, 180.2 pm, ClO3?, 106.4, BrO3?, 104.0, and IO3?, 99.6°. The structure data obtained are discussed in terms of possible orientational disorder of the water molecules, strengths of the hydrogen bonds, influence of the lead ions on the structure, and site group distortion of the halate ions.  相似文献   

15.
In the title compound, hexakis(1,2‐di­hydro‐1,5‐di­methyl‐2‐phenyl‐3H‐pyrazol‐3‐one‐O)­terbium(III) triperchlorate, [Tb(C11H12N2O)6](ClO4)3, the Tb atom lies on a site of crystallographic symmetry and the unique Tb—O distance is 2.278 (2) Å. One of the perchlorate anions has threefold crystallographic symmetry, while the other is disordered about a site.  相似文献   

16.
The title compound crystallizes as the mono­hydrate, [Co(SeO3)(NH3)4]NO3·H2O. The crystallographic mirror symmetry coincides with the molecular symmetry; the mirror plane passes through the cation, anion and water mol­ecule. The CoN4O2 octahedron is distorted, with the selenito group acting as a bidentate ligand through two bridging O atoms to the cobalt. The coordinated Se—O distance is 1.742 (2) Å, whereas the uncoordinated Se—O distance is 1.646 (3) Å. A three‐dimensional hydrogen‐bonded network exists between [Co(SeO3)(NH3)4]NO3 and the water mol­ecule. The nitrate anion and water mol­ecule form open pores in the structure when hydrogen bonded to two neighboring [Co(SeO3)(NH3)4]+ cations. Selenium participates in two types of relatively close intermolecular interactions with neighboring charged species (Se?N1 and Se?O3), but does not participate in an interaction with a neighboring O2 atom, the nearest contact distance being 4.638 (3) Å.  相似文献   

17.
This Focus Review describes molecular glasses as a new class of materials for nonlinear optical (NLO) applications, especially for electro‐optic (E‐O) devices. Examples of E‐O molecular glasses are reviewed with a focus on the molecular design of NLO chromophores and solid‐state engineering of molecular glasses. Molecular glasses based on dendrimers of multiple chromophores, molecular glass blends of chromophores, and molecular glasses based on reversible self‐assembly of chromophores are introduced as promising architectures to prepare morphologically stable molecular glasses with large E‐O activities and improved material properties for device applications. Future directions to fully exploit the potential of molecular glasses for NLO materials are presented.  相似文献   

18.
The structure of the title complex consists of isolated [Cd(C7H4NO3S)2(C4H11NO2)2] units. The Cd2+ cation lies on an inversion centre and is octahedrally coordinated by two N,O‐bidentate diethanol­amine (dea) and two N‐bonded saccharinate (sac) ligands [saccharin is 1,2‐benziso­thia­zol‐3(2H)‐one 1,1‐dioxide]. The dea ligands constitute the equatorial plane of the octahedron, forming two five‐membered chelate rings around the CdII ion, while the sac ligands are localized at the axial positions. The Cd—Nsac, Cd—Ndea and Cd—Odea bond distances are 2.3879 (12), 2.3544 (14) and 2.3702 (13) Å, respectively. The H atoms of the free and coordinated hydroxyl groups of the dea ligands are involved in hydrogen bonding with the carbonyl and sulfonyl O atoms of the neighbouring sac ions, while the amine H atom forms a hydrogen bond with the free hydroxyl O atom. The individual mol­ecules are held together by strong hydrogen bonds, forming an infinite three‐dimensional network.  相似文献   

19.
The title compound, [Ni2(C2O4)(C4H13N3)2(H2O)2](PF6)2·‐2H2O, contains a dinuclear oxalato‐bridged nickel(II) complex cation. The structure determination reveals the presence of a centrosymmetric binuclear complex where the oxalate ligand is coordinated in a bis­‐bidentate mode to the Ni atoms. The distorted octahedral environment of each Ni atom is completed by the three N atoms of the diethyl­enetri­amine ligand in a fac arrangement and by one O atom from a water mol­ecule. PF6? acts as counter‐anion. A two‐dimensional network of hydrogen bonds links the cations and anions and stabilizes the structure.  相似文献   

20.
Reactions of 1,10‐phenanthroline monohydrate, Na2C4H4O4 · 6 H2O and MnSO4 · H2O in CH3OH/H2O yielded a mixture of [Mn2(H2O)4(phen)2(C4H4O4)2] · 2 H2O ( 1 ) and [Mn(phen)2(H2O)2][Mn(phen)2(C4H4O4)](C4H4O4) · 7 H2O ( 2 ). The crystal structure of 1 (P1 (no. 2), a = 8.257(1) Å, b = 8.395(1) Å, c = 12.879(2) Å, α = 95.33(1)°, β = 104.56(1)°, γ = 106.76(1)°, V = 814.1(2) Å3, Z = 1) consists of the dinuclear [Mn2(H2O)4(phen)2(C4H4O4)2] molecules and hydrogen bonded H2O molecules. The centrosymmetric dinuclear molecules, in which the Mn atoms are octahedrally coordinated by two N atoms of one phen ligand and four O atoms from two H2O molecules and two bis‐monodentate succinato ligands, are assembled via π‐π stacking interactions into 2 D supramolecular layers parallel to (101) (d(Mn–O) = 2.123–2.265 Å, d(Mn–N) = 2.307 Å). The crystal structure of 2 (P1 (no. 2), a = 14.289(2) Å, b = 15.182(2) Å, c = 15.913(2) Å, α = 67.108(7)°, β = 87.27(1)°, γ = 68.216(8)°, V = 2934.2(7) Å3, Z = 2) is composed of the [Mn(phen)2(H2O)2]2+ cations, [Mn(phen)2(C4H4O4)] complex molecules, (C4H4O4)2– anions, and H2O molecules. The (C4H4O4)2– anions and H2O molecules form 3 D hydrogen bonded network and the cations and complex molecules in the tunnels along [001] and [011], respectively, are assembled via the π‐π stacking interactions into 1 D supramolecular chains. The Mn atoms are octahedrally coordinated by four N atoms of two bidentate chelating phen ligands and two water O atoms or two carboxyl O atoms (d(Mn–O) = 2.088–2.129 Å, d(Mn–N) = 2.277–2.355 Å). Interestingly, the succinato ligands in the complex molecules assume gauche conformation bidentately to chelate the Mn atoms into seven‐membered rings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号