首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption qualities of GaO(4)Al(12)(OH)(24)(H(2)O)(12)(7+), a polycation with ε-Keggin structure, and its stability in contact with anionic cellulosic materials, was investigated under different concentration and ionic strength conditions. The cellulosic materials employed were two different fully bleached fibre materials, carboxyl methyl cellulose (CMC), and a spin-coated cellulose model surface. As analytical techniques, pH-measurements, potentiometric titrations, ICP-OES, QCM-D, equilibrium calculations and Extended X-ray Absorption Fine Structure (EXAFS) were used. The adsorption is substantial and the addition of GaO(4)Al(12)(OH)(24)(H(2)O)(12)(7+) to a fibre suspension results in a rapid decrease in pH, followed by a small and slow increase in pH. This behaviour can be explained as due to a rapid and strong (log β>2) equilibrium adsorption of intact GaO(4)Al(12)(OH)(24)(H(2)O)(12)(7+) ions, followed by a slow, and minor, 3-8%, decomposition into different monomers. Alternative layer by layer adsorption of this ion, and CMC, on a spin-coated cellulose model surface constitutes further evidence for the strong interactions between the anionic cellulose materials and GaO(4)Al(12)(OH)(24)(H(2)O)(12)(7+). It is shown that the adsorption observed could not be described as due to an unspecific Donnan adsorption behaviour, neither of GaO(4)Al(12)(OH)(24)(H(2)O)(12)(7+) nor Ga and Al monomers, and specific surface complex formation is therefore discussed and applied. The (≡COO)(7)GaO(4)Al(12)(OH)(24)(H(2)O)(12) species found to explain the pH- and metal adsorption data should be considered strictly as a stoichiometric entity.  相似文献   

2.
The adsorption mechanism of mixed cationic alkyl diamine and anionic sulfonate/oleate collectors at acidic pH values was investigated on microcline and quartz minerals through Hallimond flotation, electrokinetic and diffuse reflectance FTIR studies. In the presence of anionic collectors, neither of the minerals responded to flotation but the diamine flotation of the minerals was observed to be pH and concentration dependent. The presence of sulfonate enhanced the diamine flotation of the minerals by its co-adsorption. The difference in surface charge between the minerals at pH 2 was found to be the basis for preferential feldspar flotation from quartz in mixed diamine/sulfonate collectors. The infrared spectra revealed no adsorption of sulfonate collector when used alone but displayed its co-adsorption as diamine-sulfonate complex when used with diamine. The presence of sulfonate increased the diamine adsorption due to a decrease in the electrostatic head-head repulsion between the adjacent surface ammonium ions and thereby increasing the lateral tail-tail hydrophobic bonds. The mole ratio of diamine/sulfonate was found to be an important factor in the orientation of alkyl chains and thus the flotation response of minerals. The increase in sulfonate concentration beyond diamine concentration leads to the formation of soluble 1:2 diamine-sulfonate complex or precipitate and the adsorption of these species decreased the flotation since the alkyl chains are in chaotical orientation with a conceivable number of head groups directing towards the solution phase.  相似文献   

3.
In the four studied monoalkyl phosphoric acids (n-C(12)H(25)OPO(OH)(2), MDP; n-C(14)H(29)OPO(OH)(2), MTP; n-C(16)H(33)OPO(OH)(2), MHP; and n-C(18)H(37)OPO(OH)(2)MOP), only MOP can form an insoluble monolayer at the air/water interface (pH 5.6), suggesting that the longer alkyl chain (> or =C(18)) is essential for the formation of insoluble monolayers. On the contrary, all four corresponding dialkyl phosphoric acids ((n-C(12)H(25)O)(2)PO(OH), DDP; (n-C(14)H(29)O)(2)PO(OH), DTP; (n-C(16)H(33)O)(2)PO(OH), DHP; and (n-C(18)H(37)O)(2)PO(OH) DOP) can form insoluble monolayers, with only the pi-A isotherm of DDP showing a phase transition plateau at 25 degrees C. The enhancement of the subphase temperature not only increases the plateau pressure of the DDP monolayer, but also induces the emergence of a plateau for the DTP monolayer. In contrast to the weak influence of Na(+) and K(+) (1 x 10(-4) M in the subphases, pH approximately 5.6) on the pi-A isotherm of DDP, Ca(2+), Sr(2+), and Ba(2+) (1 x 10(-4) M in the subphases, pH approximately 5.6) have an evident impact on the isotherms of DDP, and the different isotherm results indicate that DDP can recognize the three divalent cations at the air/water interface. In addition, the gaseous portion and phase transition plateaus of the isotherms of some DAPs on pure water and on subphases containing Ca(2+), Sr(2+), or Ba(2+) were well simulated by Volmer's equation of state and Vollhardt's equation, except for a small difference for gas phases around critical points. The relationship between the plateau and the net molecule area is also discussed.  相似文献   

4.
Surface characteristics of complex aluminosilicate minerals like spodumene [LiAl(SiO(3))(2)], jadeite [NaAl(SiO(3))(2)], feldspar [KAlSi(3)O(8)], and muscovite [K(2)Al(4)(Al(2)Si(6)O(20))(OH)(4)]) are modeled. Surface energies are computed for the cleavage planes of these minerals. Adsorption mechanisms of anionic chemisorbing type oleate and cationic physisorbing type dodecylammonium chloride molecules on two different crystal planes, that is (110) and (001), of spodumene and jadeite are studied in terms of the surface-surfactant interaction energies computed using molecular dynamics (MD) simulations. The conclusions drawn from purely theoretical computations match remarkably well with our experimental results.  相似文献   

5.
The Separation of ink and pulp fibers in recycled paper is primarily achieved by flotation methods. Xerographic toners from photocopiers and laser printers are known to cause problems in flotation deinking. Wettability and froth stability are two important factors which determine the floatability of xerographic toners. The floatability is investigated for a selected toner using a cationic, a nonionic, and an anionic surfactant. At low surfactant concentrations the froth is too unstable to support flotation, whereas at high surfactant concentrations the toner is rendered hydrophilic by adsorbed surfactant molecules and does not stick to air bubbles. Consequently, a maximum in flotation response is found at an intermediate surfactant concentration near the critical micelle concentration. Cationic, nonionic, and anionic surfactants all adsorb with their hydrocarbon tails on the toner surface. By choosing appropriate froth-stabilizing additives it is possible to enhance the flotation performance.  相似文献   

6.
Son JH  Kwon YU  Han OH 《Inorganic chemistry》2003,42(13):4153-4159
By reacting Keggin-type polyoxometalate cluster anions H(2)W(12)O(40)(6)(-) (metatungstate) or Co(II)W(12)O(40)(6)(-) (tungstocobaltate) with the large aluminum cluster polycation [Al(30)O(8)(OH)(56)(H(2)O)(26)](18+), Keggin ion based molecular ionic compounds [delta-Al(13)O(4)(OH)(24)(H(2)O)(12)][XW(12)O(40)](OH).nH(2)O (X = H(2) (1) and Co (2); n congruent with 20) and [W(2)Al(28)O(18)(OH)(48)(H(2)O)(24)][H(2)W(12)O(40)](2).55H(2)O (3) were obtained. The polygon-shaped cluster ions are packed alternately through intercluster hydrogen bonds as well as electrostatic interactions, leaving large pores, which result from the packing of large clusters. The clusters are arranged in square pyramidal geometries, showing face-to-face interactions between them. The isolation of metastable [delta-Al(13)O(4)(OH)(24)(H(2)O)(12)](7+) and the formation of a new transition metal substituted aluminum heteropolycation [W(2)Al(28)O(18)(OH)(48)(H(2)O)(24)](12+) in 1-3 result from the slow fragmentation and recombination of Al(30) in the presence of suitable counter cluster anions with similar shape and charge.  相似文献   

7.
The alkane elimination reaction between Salen((t)Bu)H(2) ligands and diethylaluminum bromide was used to prepare three Salen aluminum bromide compounds salen((t)Bu)AlBr (1) (salen = N,N'-ethylenebis(3,5-di-tert-butylsalicylideneimine)), salpen((t)Bu)AlBr (2) (salpen = N,N'-propylenebis(3,5-di-tert-butylsalicylideneimine)), and salophen((t)Bu)AlBr (3) (salophen = N,N'-o-phenylenenebis(3,5-di-tert-butylsalicylideneimine)). The compounds contain five-coordinate aluminum either in a distorted square pyramidal or a trigonal bipyramidal environment. The bromide group in these compounds could be displaced by triphenylphosphine oxide or triphenyl phosphate to produce the six-coordinate cationic aluminum compounds [salen((t)Bu)Al(Ph(3)PO)(2)]Br (4), [salpen((t)Bu)Al(Ph(3)PO)(2)]Br (5), [salophen((t)Bu)Al(Ph(3)PO)(2)]Br (6), and [salophen((t)Bu)Al[(PhO)(3)PO)](2)]Br (7). All the compounds were characterized by (1)H, (13)C, (27)Al, and (31)P NMR, IR, mass spectrometry, and melting point. Furthermore, compounds 1-3 and 5-7 were structurally characterized by single-crystal X-ray diffraction. Compounds 1-3 dealkylated a series of organophosphates in stoichiometric reactions by breaking the ester C-O bond. Also, they were catalytic in the dealkylation reaction between trimethyl phosphate and added boron tribromide.  相似文献   

8.
Aqueous trivalent aluminum (Al) ions and their oligomers play important roles in diverse areas, such as environmental sciences and medicine. The geometries of octahedral Al(H(2)O)(6)(3+) and tetrahedral Al(OH)(4)(-) species have been studied extensively. However, structures of intermediate hydrolysis products of the Al(III) ion, such as the penta-coordinated Al(OH)(2+) species, which exists at pH values ranging from 3.0 to 4.3, and their mode of formation have been poorly understood. Here, we present that a trigonal bipyramidal Al(OH)(H(2)O)(4)(2+) structure is formed in aqueous solution and how this monomeric species dimerizes to a dinuclear [(H(2)O)(4)Al(OH)(2)Al(H(2)O)(4)](4+) complex in aqueous solution. The Gibbs free energy change calculations indicate that the formation of the dinuclear complex is preferred over the existence of two single trigonal bipyramidal Al(OH)(H(2)O)(4)(2+) species in aqueous solution. This study captures the solution dynamics and proton transfer in the oligomerization reactions of penta-coordinated Al(OH)(2+) species in aqueous solution.  相似文献   

9.
The mineral arsentsumebite Pb(2)Cu(AsO(4))(SO(4))(OH), a copper arsenate-sulphate hydroxide of the brackebuschite group has been characterised by Raman spectroscopy. The brackebuschite mineral group are a series of monoclinic arsenates, phosphates and vanadates of the general formula A(2)B(XO(4))(OH,H(2)O), where A may be Ba, Ca, Pb, Sr, while B may be Al, Cu(2+),Fe(2+), Fe(3+), Mn(2+), Mn(3+), Zn and XO(4) may be AsO(4), PO(4), SO(4),VO(4). Bands are assigned to the stretching and bending modes of SO(4)(2-) AsO(4)(3-) and HOAsO(3) units. Raman spectroscopy readily distinguishes between the two minerals arsentsumebite and tsumebite. Raman bands attributed to arsenate are not observed in the Raman spectrum of tsumebite. Phosphate bands found in the Raman spectrum of tsumebite are not found in the Raman spectrum of arsentsumebite. Raman spectroscopy readily distinguishes the two minerals tsumebite and arsentsumebite.  相似文献   

10.
The trans-[Ru(NO)(NH(3))(4)(P(OH)(3))]Cl(3) complex was synthesized by reacting [Ru(H(2)O)(NH(3))(5)](2+) with H(3)PO(3) and characterized by spectroscopic ((31)P-NMR, δ = 68 ppm) and spectrophotometric techniques (λ = 525 nm, ε = 20 L mol(-1) cm(-1); λ = 319 nm, ε = 773 L mol(-1) cm(-1); λ = 241 nm, ε = 1385 L mol(-1) cm(-1); ν(NO(+)) = 1879 cm(-1)). A pK(a) of 0.74 was determined from infrared measurements as a function of pH for the reaction: trans-[Ru(NO)(NH(3))(4)(P(OH)(3))](3+) + H(2)O ? trans-[Ru(NO)(NH(3))(4)(P(O(-))(OH)(2))](2+) + H(3)O(+). According to (31)P-NMR, IR, UV-vis, cyclic voltammetry and ab initio calculation data, upon deprotonation, trans-[Ru(NO)(NH(3))(4)(P(OH)(3))](3+) yields the O-bonded linkage isomer trans- [Ru(NO)(NH(3))(4)(OP(OH)(2))](2+), then the trans-[Ru(NO)(NH(3))(4)(OP(H)(OH)(2))](3+) decays to give the final products H(3)PO(3) and trans-[Ru(NO)(NH(3))(4)(H(2)O)](3+). The dissociation of phosphorous acid from the [Ru(NO)(NH(3))(4)](3+) moiety is pH dependent (k(obs) = 2.1 × 10(-4) s(-1) at pH 3.0, 25 °C).  相似文献   

11.
The removal of orthophosphates (10(-2) kg P m(-3)), condensed phosphates (10(-2) kg P m(-3)), and mixtures of both (5 x 10(-3) kg P m(-3) as orthophosphate and 5 x 10(-3) kg P m(-3) as metaphosphate) in aqueous solution is studied using alum and aluminum hydroxide. The effects of coagulant dose, pH, temperature, aging of aluminum hydroxide, and presence of different ions are investigated. On the basis of the experimental results, alum is much more efficient in phosphorus removal than aluminum hydroxide even if, in both cases, at the conditions studied, the active coagulant form is Al(OH)(3). The differences then could be due to the higher activity of the in situ formed hydroxide. Orthophosphates and metaphosphates seem to have similar behavior vs pH variation: maximum removal is achieved at pH values 5-6 in all cases. On the other hand, in the simultaneous presence of both P forms, orthophosphate and metaphosphate ions have different affinities for the surface sites of aluminum hydroxide, since for both alum and aluminum hydroxide, orthophosphates are preferentially removed compared to metaphosphates, due probably to orientation effects and the charge per P atom. The presence of sodium, potassium, magnesium, sulfate, chloride, and magnesium, at the concentrations studied and for a pH value of 6, does not influence P removal. Temperature variation, between 25 and 60 degrees C, does not affect alum efficiency but both P forms are increasingly removed with increasing temperature, probably due to polymer Al(OH)(3) breaking, producing new surfaces for adsorption. Aging decreases sorption capacity of Al(OH)(3), while crystallites of increasing size are formed. Finally adsorption of both P forms is best described by the Freundlich isotherm [[K(F)=(49.1-69.1) x 10(-3) (m(3)kg(-1))(1/N), 1/N: 0.14-0.19 for T=25-60 degrees C] and [ K(F)=(1.58-2.79) x 10(-3) (m(3)kg(-1))(1/N), 1/N: 2.17-2.47 for T=25-60 degrees C] for orthophosphate and metaphosphate, respectively.  相似文献   

12.
The structures of core-links Al(13) (C-Al(13)) and flat-Al(13) (F-Al(13)) complexes in aqueous solution have been investigated using density functional theory (DFT) at the level of B3LYP/6-31G(d). The present work focuses on the following three aspects: (1) C-Al(13)(9+) was optimized with the consideration of solvent effect and the (27)Al NMR chemical shifts using Hartree Fock GIAO and B3LYP GIAO methods were computed respectively; (2) the optimization of F-Al(13)(15+) was also performed and the (27)Al NMR chemical shifts were obtained using the same methods as above; (3) the structural parameters of a series of typical aluminum species (Al(3+), AlOH(2+), AlF(2+), Al(2)(4+), Al(6)(6+), K-Al(13)(7+), C-Al(13)(9+) and F-Al(13)(15+)) were compared.  相似文献   

13.
《Colloids and Surfaces》1988,29(2):221-232
The cationic flotation of quartz was carried out from an artificial mixture (1:1 by weight) of fine grained ( − 10 μm) quartz and hematite, using hexylamine acetate (HAA) and dodecylamine acetate (DAA) as collectors. Selective flotation of quartz was possible in the pH range 9–10 using HAA. The adsorption densities of DAA and HAA on quartz and hematite were measured at pH 9.8 and the relationship between the flotation behavior of both minerals and the surface coverage of collectors was established. Complete flotation of quartz and hematite required a surface coverage (θ) of DAA of about 100% at pH 9.8, while complete flotation of quartz took place at θ ⋍ 10% with HAA. The flotation behavior with DAA was explained by considering the adsorption of undissociated free amine. Zeta potential measurements were incorporated to interpret the difference in the adsorption behavior of both collectors on quartz and hematite.  相似文献   

14.
2-((Naphthalen-6-yl)methylthio)ethanol (HL) was prepared by one pot synthesis using 2-mercaptoethanol and 2-bromomethylnaphthalene. It was found to be a highly selective fluorescent sensor for Al(3+) in the physiological pH (pH 7.0-8.0). It could sense Al(3+) bound to cells through fluorescence microscopy. Metal ions like Mn(2+), Fe(3+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Ag(+), Cd(2+), Hg(2+), Cr(3+) and Pb(2+) did not interfere. No interference was also observed with anions like Cl(-), Br(-), F(-), SO(4)(2-), NO(3)(-), CO(3)(2-), HPO(4)(2-) and SCN(-). Experimentally observed structural and spectroscopic features of HL and its Al(3+) complex have been substantiated by computational calculations using density functional theory (DFT) and time dependent density functional theory (TDDFT).  相似文献   

15.
The kinetics and mechanisms of ligand substitution reactions of the iron(III) hydroxo dimer, Fe(2)(mu-OH)(2)(H(2)O)(8)(4+), with various inorganic ligands were studied by the stopped-flow method at 10.0 or 25.0 C in 1.0 M NaClO(4). The transient formation of the following di- and tetranuclear complexes was confirmed: Fe(2)(OH)SO(4)(3+), Fe(2)(OH)H(2)PO(2)(4+), Fe(2)(OH)HPO(3)(3+), Fe(2)(OH)SeO(3)(3+), and Fe(4)(AsO(4))(OH)(2)(7+). The catalytic effect of arsenic(III) on the hydrolytic reaction of iron(III) was also attributed to the formation of a dinuclear complex at very low concentration levels. Fast formation and subsequent dissociation of the multinuclear species into the corresponding mononuclear complexes (FeL) proceed via parallel reaction paths which, in general, show composite pH dependencies. The appropriate rate laws were established. The reactions of the different ligands occur at very similar rates, though the uninegatively charged singly deprotonated form reacts about 1 order of magnitude faster than the neutral form of the same ligand. The results can conveniently be interpreted in terms of a dissociative interchange mechanism which postulates the formation of an intermediate complex in which the ligand is coordinated to only one Fe(III) center of the hydroxo dimer. In a subsequent fast step, the ligand forms a bridge between the two metal ions by replacing one of the OH groups. The dissociation of the dinuclear complex into FeL most likely proceeds via the same intermediate.  相似文献   

16.
Ion, precipitate and adsorbing colloid flotation of cobalt(II) have been investigated at different pH values, using N-dodecylpyridinium chloride (DPCl), A strong cationic surfactant, and sodium lauryl sulfate (NaLS), a strong anionic surfactant, as collectors. In case of adsorbing colloid flotation, hydrous manganese dioxide was used as an adsorbent. The precipitate flotation curves experimentally obtained with the two tested collectors were compared with the corresponding theoretical one calculated from the data published for Co(II) hydrolysis. The effects of the collector concentration, ageing of the water-MnO2–Co(II) system, bubbling time period, cobalt(II) concentration and foreign salts on the percent removal of Co(II) by adsorbing colloid flotation using DPCl as collector were determined. Removals approaching 100% could be achieved under the optimum conditions.  相似文献   

17.
Pulsed field gradient (1)H NMR spectroscopy has been applied to investigate the association behavior of the Sn(12)-oxo cluster macrocation [(BuSn)(12)O(14)(OH)(6)](2+) with two different and smaller anions, p-toluenesulfonate (PTS(-)) and diphenylphosphinate (Ph(2)PO(2) (-)). By monitoring the translational diffusion coefficients of the various species involved, it is shown that the association depends on the anion involved and on the solvent used. Moreover, the possibility to individually monitor the diffusion characteristics of multiple anionic and cationic species in mixtures, by virtue of resolved (1)H resonances available from each species, allows us to evidence the occurrence of ion exchange in such systems. Thus when [(BuSn)(12)O(14)(OH)(6)](PTS)(2) is mixed with two equivalents of Ph(2)PO(2)NMe(4), PTS(-) is displaced by Ph(2)PO(2) (-), highlighting the greater affinity of the organotin macrocation for the diphenylphosphinate. This example clearly illustrates the potential of pulsed field gradient (1)H NMR spectroscopy in inorganic/organometallic chemistry, to follow preferential ion pairing in multi-ion systems at the level of each individually charged species.  相似文献   

18.
The UV-visible absorption spectra of caffeic acid, caffeate and of the predominant complex obtained in the presence of aluminum ion (1:1 stoichiometry) have been simulated by using the time-dependent density functional theory (TD-DFT) technique, taking into account solvent effects. Whereas the use of the B3LYP hybrid XC functional with the 6-31+G(d,p) basis set allows us to reproduce fairly well the essential features of the experimental spectra of caffeic acid and caffeate, it is necessary to introduce an effective core potential to properly describe the aluminum ion and its environment and to obtain a good agreement between theoretical and experimental spectra of the 1:1 complex. The ligand presents two potential complexing sites in competition. The results of our calculations show that the aluminum ion coordinates preferentially at the level of the catecholate group, and the [Al(H(2)O)(4)(CA)], [Al(H(2)O)(3)(OH)(CA)](-) and [Al(H(2)O)(4)(HCA)](+) complexed forms could coexist in aqueous solution at pH = 5.  相似文献   

19.
The adsorption isotherm of and the pH effect on the adsorption of myo-inositol hexaphosphate (myo-IP6) on amorphous aluminum hydroxide was investigated. It was found that the adsorption isotherm of myo-IP6 on aluminum hydroxide could be well fitted with the Freundlich isotherm. The amount of myo-IP6 adsorbed remained almost constant in the range of pH 4.0 to 7.0, but it decreased considerably as the initial pH was over 7. The adsorption of myo-IP6 resulted in an increase in the pH level due to the release of OH(-) ions, which suggested that the adsorption of myo-IP6 on aluminum hydroxide was caused by a ligand exchange reaction. ATR-FTIR analysis of myo-IP6 in solution and adsorbed on aluminum hydroxide at different pH were performed. The ATR-FTIR investigation indicated that myo-IP6 was adsorbed onto aluminum hydroxide by forming inner-sphere complexes and adsorption facilitated the deprotonation of phosphate groups. The asymmetric vibration of the PO bond in AlPO(-)(3) appearing at a lower frequency than that in the terminal HPO(-)(3) indicated that Al bound to the O atom not as strongly as the H atom did. The ATR-FTIR investigation and theoretical calculation (with the Gaussian 03 program) revealed that three of the six phosphate groups in myo-IP6 molecules were bound to aluminum hydroxide while the other three remained free when myo-IP6 was adsorbed on aluminum hydroxide.  相似文献   

20.
Surface complex formation of K(+), NO(3)(-), SO(4)(2-), Ca(2+), F(-), Co(2+), and Cr(3+) ions was determined on the surface of silica gel. Experimental data obtained by acid-base titration of suspensions were interpreted in terms of the triple-layer model. The value of the deprotonation constant of surface OH could be determined precisely but the protonation constant was rather uncertain. The logarithms of ion pair formation constants for K(+), NO(3)(-), Ca(2+), and SO(4)(2-) adsorbed in the beta-plane are log K(ipM,X) approximately 0, therefore these species can be considered inert ions in the investigated pH range. F(-), Co(2+), and Cr(3+) ions were found to be strongly sorbed in the o-plane. In order to provide a good fit and to obtain parameters independent of their initial values, all possible equilibrium must be accounted for in the models. Copyright 2001 Academic Press.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号