首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
The use of excessively long time steps in dissipative particle dynamics simulations may produce simulation artifacts due to the generation of configurations which are not representative of the desired canonical ensemble. The configurational temperature, among other quantities, may be used to assess the extent of the deviation from equilibrium. This paper presents results for simulations of models of water and lipid bilayer membranes to illustrate the nature of the problems.  相似文献   

2.
Study of the dynamic interfacial tension at the oil/water interface   总被引:1,自引:0,他引:1  
A review is given on three recently developed methods to measure the dynamic interfacial tension at the oil/water interface. These are respectively the dynamic drop volume method, the dynamic capillary method, and the (reversed) funnel method. For each method presented the basic principles are described and a few experimental results are given.Paper presented at the 7th International Conference on Surface Active Substances (Bad-Stuer, DDR, 25–30. April 1988).  相似文献   

3.
A series of large-scale atomistic molecular dynamics simulations were conducted to study the structural and interfacial properties of nonionic dimethyldodecylamine-N-oxide (DDAO) micelles with an aggregation number of 104 in pure water, which was determined using small-angle neutron scattering (SANS). From these simulations, the micelles were found to be generally ellipsoidal in shape with axial ratios of ~1.3-1.4, which agrees well with that found from small-angle neutron scattering measurements. The resulting micelles have an area per DDAO molecule of 94.8 ?(2) and an average number of hydration water molecules per DDAO molecule of ~8. The effect of the encapsulation of ethyl butyrate (CH(3)(CH(2))(2)COOCH(2)CH(3), C(4)) and ethyl caprylate (CH(3)(CH(2))(6)COOCH(2)CH(3), C(8)) on the structural and interfacial properties of the nonionic DDAO aggregates was also examined. In the presence of the C(4) oil molecules, the aggregates were found to be less ellipsoidal and more spherical than the pure DDAO micelles, while the aggregates in the presence of the C(8) oil molecules were almost perfect spheres. In addition, the C(4) oil molecules move into the core of the aggregates, while the C(8) oil molecules stay in the headgroup region of the aggregates. Finally, the structural properties of two micelles formed from different starting states (a "preassembled" sphere and individual DDAO molecules distributing in water) were found to be nearly identical.  相似文献   

4.
The authors introduce a new parameterization for the dissipative particle dynamics simulations of lipid bilayers. In this parameterization, the conservative pairwise forces between beads of the same type in two different hydrophobic chains are chosen to be less repulsive than the water-water interaction, but the intrachain bead interactions are the same as the water-water interaction. For a certain range of parameters, the new bilayer can only be stretched up to 30% before it ruptures. Membrane tension, density profiles, and the in-plane lipid diffusion coefficient of the new bilayer are discussed in detail. They find two kinds of finite size effects that influence the membrane tension: lateral finite size effects, for which larger membranes rupture at a smaller stretch, and transverse finite size effects, for which tensionless bilayers are more compact in larger systems. These finite size effects become rather small when the simulation box is sufficiently large.  相似文献   

5.
We present a method for constant-pressure and constant-surface tension simulations in dissipative particle dynamics using a Langevin piston approach. We demonstrate that the corresponding equations of motion lead to the relevant ensembles and propose an appropriate scheme of integration. After having identified a suitable set of parameters for the approach, we demonstrate the feasibility of the approach by applying it to two different systems, a simple isotropic fluid and an anisotropic fluid lipid-bilayer membrane in water. Results are presented for, respectively, isothermal bulk compressibility, tracer diffusion coefficient, lipid head-group area, and isothermal area compressibility. We find that our Langevin piston approach leads to improvements over other approaches in terms of faster equilibration and shorter correlation times of various system variables.  相似文献   

6.
7.
Molecular dynamics simulations have been performed to examine the thermodynamic properties of methane/water interface using two different water models, the TIP4P/2005 and SPC/E, and two sets of combining rules. The density profiles, interfacial tensions, surface excesses, surface pressures, and coexisting densities are calculated over a wide range of pressure conditions. The TIP4P/2005 water model was used, with an optimized combining rule between water and methane fit to the solubility, to provide good predictions of interfacial properties. The use of the infinite dilution approximation to calculate the surface excesses from the interfacial tensions is examined comparing the surface pressures obtained by different approaches. It is shown that both the change of methane solubilities in pressure and position of maximum methane density profile at the interface are independent of pressure up to about 2 MPa. We have also calculated the adsorption enthalpies and entropies to describe the temperature dependency of the adsorption.  相似文献   

8.
9.
We have used dynamic interfacial tension measurements to understand the structure of the ordered monolayer at the hexadecane/water interface induced by the presence of surfactant molecules. No abrupt changes in the interfacial tension (gamma) are observed during the expansion and contraction cycle below the interfacial ordering temperature (Ti) as observed for alkanes in contact with air. The lack of an abrupt change in gamma and the magnitude of this change during the expansion process indicate that the ordered phase may not be crystalline. The change in the interfacial tension is due to an increase in contact between water and hexadecane molecules and the disordering of the interfacial ordered layer. At low surfactant concentrations, the recovery of the interfacial tension is slower below Ti, suggesting that there is a critical surfactant concentration necessary to nucleate an ordered phase at the interface.  相似文献   

10.
In the present study, we have performed molecular dynamics simulations to describe the microscopic behaviors of the anionic, nonionic, zwitterion, and gemini surfactants at oil/water interface. The abilities of reducing the interfacial tension and forming the stable interfacial film of the four surfactants have been investigated through evaluating interfacial thickness, interface formation energy and radial distribution function. The results show that the four kinds of surfactants can form in stable oil/water interface of monolayer, and the gemini surfactant can form the more stable monolayer. The results of the above three parameters demonstrate that the gemini surfactant has the best simulation effect in the four surfactants. From the calculated interfacial tension values, the gemini surfactant possess the more powerful ability of reducing the interfacial tension than others, so it is more suitable to be used as the surfactant for flooding. In addition, the effects of different electric field intensities on surfactants were calculated, through the radial distribution function of the hydrophilic group in the surfactant and the oxygen atom in the water. We have found that the adding of the periodic electric field can significantly affect the diffusion behavior of the molecules, and nonionic surfactant has stronger demulsification capability than others.  相似文献   

11.
Fully atomistic molecular dynamics simulations of amphiphilic graft copolymer molecules have been performed at a range of surface concentrations at a water/air interface. These simulations are compared to experimental results from a corresponding system over a similar range of surface concentrations. Neutron reflectivity data calculated from the simulation trajectories agrees well with experimentally acquired profiles. In particular, excellent agreement in neutron reflectivity is found for lower surface concentration simulations. A simulation of a poly(ethylene oxide) (PEO) chain in aqueous solution has also been performed. This simulation allows the conformational behavior of the free PEO chain and those tethered to the interface in the previous simulations to be compared.  相似文献   

12.
There is a close correlation between the interfacial activity and the adsorption of the surfactant at the interface, but the detailed molecular standard information was scarce. The interfacial activity of two traditional anionic surfactants sodium dodecyl benzene sulfonate (SDBS) and sodium oleate (OAS) were studied by experimental and computer simulation methods. With the spinning drop method and the suspension drop method, the interfacial tension of oil/aqueous surfactant systems was measured, and the influence of surfactant concentration and salinity on the interfacial tension was investigated. The dissipative particle dynamics (DPD) method was used to simulate the adsorption of SDBS and OAS at the oil/water interface. It was shown that it is beneficial to decrease interfacial tension if the hydrophobic chains of the surfactant and the oil have similar structure. The accession of inorganic salts causes surfactant molecules to form more compact and ordered arrangements and helps to decrease the interfacial tension. There is an osculation relation between interfacial density and interfacial activity. The interfacial density calculated by molecular simulation is an effective parameter to exhibit the interfacial activity.  相似文献   

13.
The self-assembly behaviors of a battery of zwitterionic heterogemini surfactants CmH2m+1-PO4--(CH2)2-N+(CH3)2-CnH2n+1, abbreviated as Cm-P-N-Cn (m, n?=?9, 9; 9, 12; 9, 15; 9, 18; 12, 12; 12, 15; 12, 18; 15, 15; 15, 18; 18, 18), have been explored at an oil-water interface by means of the dissipative particle dynamics (DPD) method. Regular oil-water contact together with oil-in-water and water-in-oil emulsions has come into being. Compared with the Cm-P-N-Cn concentration and the oil-water ratio, the hydrophobic chain length plays a less important role in the self-assembly morphology of Cm-P-N-Cn molecules at the interface together with the interfacial morphology. The asymmetry in the molecular structure of Cm-P-N-Cn dominates its critical micelle concentration (CMC) and interfacial efficiency. The Cm-P-N-Cn concentration and its hydrophobic chain length work together to affect the interfacial thickness. What’s more, the dependence of CMC on the Cm-P-N-Cn molecular structure is in qualitative agreement with corresponding experimental findings.  相似文献   

14.
This review presents the historical development and current status of the theory of the electrical double layer at a liquid/liquid interface. It gives rigorous thermodynamic definitions of all basic concepts related to liquid interfaces and to the electrical double layer. The difference between the surface of a solid electrode and the interface of two immiscible electrolyte solutions (ITIES) is analyzed in connection to their electrical properties. The most important classical relationships for the electrical double layer are presented and critically discussed. The generalized adsorption isotherm is derived. After a short review of the classical Gouy-Chapman and Verwey-Niessen models, more recent developments of the double layer theory are presented. These include effects of variable dielectric permittivity, nonlocal electrostatics, hydration forces, the modified Poisson-Boltzmann equation and the ion-dipole plasma. The relative merits of different theories are estimated by comparing them with computer simulation of the ITIES and electrical double layer. Special attention is given to the structure of ITIES and its variation due to adsorption of ions and amphiphilic molecules.  相似文献   

15.
The electrostatic interactions in dissipative particle dynamics (DPD) simulations are calculated using the standard Ewald [Ann. Phys. 64, 253 (1921)] sum method. Charge distributions on DPD particles are included to prevent artificial ionic pair formation. This proposal is an alternative method to that introduced recently by Groot [J. Chem. Phys. 118, 11265 (2003)] where the electrostatic field was solved locally on a lattice. The Ewald method is applied to study a bulk electrolyte and polyelectrolyte-surfactant solutions. The structure of the fluid is analyzed through the radial distribution function between charged particles. The results are in good agreement with those reported by Groot for the same systems. We also calculated the radius of gyration of a polyelectrolyte in salt solution as a function of solution pH and degree of ionization of the chain. The radius of gyration increases with the net charge of the polymer in agreement with the trend found in static light scattering experiments of polystyrene sulfonate solutions.  相似文献   

16.
Interfacial tension measurements have been performed at the water/hexane interface on mixtures of the bovine milk protein β-lactoglobulin and positively charged cationic surfactants (alkytrimethylammonium bromides). The addition of surfactants with different chain lengths leads to the formation of protein-surfactant complexes with different adsorption properties as compared to those of the single protein. In this study, the formation of complexes has been observed clearly for protein-long chain surfactant (TTAB and CTAB) mixtures, which has shown in addition to specific electrostatic interactions the relevance of hydrophobic interactions between surfactant molecules and the protein. The modeling of interfacial tension data by using a mixed adsorption model provides a quantitative understanding of the mixture behavior. Indeed, the value of the adsorption constant of the protein obtained in the presence of surfactants has strongly varied as compared to the single protein. Actually, this parameter which represents the affinity of the molecule for the interface is representative of the hydrophobic character of the compound and so of its surface activity. Even if a more hydrophobic and more surface active protein-surfactant complex has been formed, the replacement of this complex from the interface by surfactants close to their cmc was observed.  相似文献   

17.
Fats are widely present in a large variety of food and represent the main source of energy for the body. In the current study we investigate the behaviour of fatty acids at liquid–liquid interfaces, mimicking some steps of the very complex digestion process. Octanoic acid is used as an example of middle chain fatty acids. For the oil phase we choose sunflower oil as an industrial product and hexane as pure oil.The influence of the fatty acid concentration and the pH of the aqueous phase on the interfacial tension is determined by profile analyse tensiometry (PAT), which allows to examine the way of adsorption and transition of the fatty acids from one phase to the other. Predominantly, the pH affects the dissociation and thereby the strength of the hydrophilic character of the fatty acid. The adsorption behaviour indicates the different interfacial activity of the studied octanoic acid.  相似文献   

18.
The material parameters (area stretch modulus and bending rigidity) of two-component amphiphilic membranes are determined from dissipative particle dynamics simulations. The preferred area per molecule for each species is varied so as to produce homogeneous mixtures or nonhomogeneous mixtures that form domains. If the latter mixtures are composed of amphiphiles with the same tail length, but different preferred areas per molecule, their material parameters increase monotonically as a function of composition. By contrast, mixtures of amphiphiles that differ in both tail length and preferred area per molecule form both homogeneous and nonhomogeneous mixtures that both exhibit smaller values of their material properties compared to the corresponding pure systems. When the same nonhomogeneous mixtures of amphiphiles are assembled into planar membrane patches and vesicles, the resulting domain shapes are different when the bending rigidities of the domains are sufficiently different. Additionally, both bilayer and monolayer domains are observed in vesicles. We conclude that the evolution of the domain shapes is influenced by the high curvature of the vesicles in the simulation, a result that may be relevant for biological vesicle membranes.  相似文献   

19.
The rotational dynamics of a number of diatomic molecules adsorbed at different locations at the interface between water and its own vapors are studied using classical molecular dynamics computer simulations. Both equilibrium orientational and energy correlations and nonequilibrium orientational and energy relaxation correlations are calculated. By varying the dipole moment of the molecule and its location, and by comparing the results with those in bulk water, the effects of dielectric and mechanical frictions on reorientation dynamics and on rotational energy relaxation can be studied. It is shown that for nonpolar and weekly polar solutes, the equilibrium orientational relaxation is much slower in the bulk than at the interface. As the solute becomes more polar, the rotation slows down and the surface and bulk dynamics become similar. The energy relaxation (both equilibrium and nonequilibrium) has the opposite trend with the solute dipole (larger dipoles relax faster), but here again the bulk and surface results converge as the solute dipole is increased. It is shown that these behaviors correlate with the peak value of the solvent-solute radial distribution function, which demonstrates the importance of the first hydration shell structure in determining the rotational dynamics and dependence of these dynamics on the solute dipole and location.  相似文献   

20.
Adsorption kinetics of some carotenoids at the oil/water interface   总被引:2,自引:0,他引:2  
The kinetic analysis of the adsorption of two carotenoids (i.e., ethyl ester of β-apo-8′-carotenoic acid and β-carotene, all trans-isomers) from n-hexane solutions at the oil/water interface is presented for several carotenoid concentrations in the oil phase. A new kinetic approach is developed and it addresses the diffusion adsorption associated with a reversible interfacial reaction, which describes the reorientation of surfactant molecules between two conformations. This approach leads to a general analytical expression that contains four physical parameters and describes with high accuracy the experimental dynamic interfacial tensions for the two carotenoids, which independently adsorb from n-hexane phase to the n-hexane/water interface. The calculations give the characteristic times for the carotenoid adsorption at the oil/water interface in terms of diffusion relaxation and kinetic relaxation times. The results explain the long time effects on the adsorption of these carotenoids at the oil/water interface. The data are in substantial agreement with the molecular structure of these carotenoids and with the earlier data recorded for cholesterol adsorption at the n-heptane/water interface. Based on these findings, we propose a molecular mechanism for the interfacial transformation of carotenoid molecules at a hydrophobic/hydrophilic interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号