首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Optical data communication will play an important role in future high speed data links. Especially in Datacom applications data rates in Gbps area will be desired. An overall low cost approach is needed on both sides, for the opto-electronic integration and for the passive optical interconnects. Opto-electronic integration will be reached through the use of one- or bidirectional transceivers for Datacom based - in future - on surface emitting lasers (VCSEL), instead of LEDs used today, and economically favorable silicon detectors. This additionally requires passive optical interconnects using beam shaped low-cost micro-optical components such as, microlenses for in- and out-coupling which are more and more popular in recently developed opto-electronic devices.Ideally, micro-optical components can be integrated in passive optical interconnects and replicated in polymer materials for the cost reducing. Hence, the increase of data rate depends on the quality of the optical surfaces. In this paper the micromechanical manufacturing technologies of microcomponents with optical surfaces are discussed. Furthermore, polymer based components are presented which can be used for coupling and routing of optical signals, e.g. a passive optical interconnect for the passive coupling into photodiode or from VCSEL and optical N × M star couplers. The polymer based interconnect module has been realized in different polymers (polymethyl methacrylate, PMMA, and cycloolefin copolymer, COC). Total loses and data rates achieved are 3.3 dB and 2 Gbps, respectively. Average total loss an e.g., polymer based 16 × 16 optical star coupler is better than 17 dB per channel with a uniformity of 3 dB. For replication of polymer substrates of these components hot embossing tools have been produced by combination of deep lithography, ultra-precise milling and micro-machining.  相似文献   

2.
The very fast running optical memory and optical logic gates are the basic building blocks for any optical computing data processing system. Realization of a very fast memory-cell in the optical domain is very challenging. In the last two decades many methods of implementing all-optical flip-flops have been proposed. Most of these suffer from speed limitation because of low switching response of the active devices. In our present communication the authors propose a method of developing a frequency encoded memory unit based on the switching action of semiconductor optical amplifier (SOA). Nonlinear polarization rotation characters of SOA and ‘SOA based Mach-Zehnder Interferometer’ switch, i.e. ‘SOA-MZI’ switch, are exploited for the purpose of some switching action with least switching power (<−3 dBm) and high switching contrast ratio (20 dB). Here two logic states (‘0’ state and ‘1’ state) of the memory is encoded by two different frequencies, which will remain unchanged throughout the data communication irrespective of loss of light energy due to reflection, refraction, attenuation, etc. Though the SOA based switch runs with the operational speed 100 Gb/s, still due to the presence of the other optical components in the memory unit, the overall speed of the proposed system will come down to 10 Gb/s.  相似文献   

3.
Optical butterfly interconnection and four primary optical perallel logic opera-tions are implemented by means of phase grating and liquid crystal light valve (LCLV),whichoffers a simple new scheme for implementing optical butterfly interconnections and digitalcomputations.  相似文献   

4.
Kousik Mukherjee 《Optik》2011,122(10):891-895
All optical logic gates exploiting polarization independent four wave mixing in semiconductor optical amplifier (SOA), filtering property of ADD/DROP multiplexer (ADM) and non-linearity in reflective semiconductor optical amplifier (RSOA) have been proposed. The logic gates proposed are polarization independent which ensures hardware simplicity and greater speed. The all optical frequency encoded logic gates NOT, OR, NOR, AND, NAND, X-OR, X-NOR are implemented which are very useful in optical computing ad signal processing, cryptography, etc. The logic gates proposed have the advantages that there is no intensity loss dependent problem, and are polarization and temperature insensitive.  相似文献   

5.
Several implementations of quantum computation making effective use of the quantum behavior of single-photons have been explored. These implementing methods were found unsuitble for large-scale computation, because they require 2N-1 optical paths to represent N qubits. In this paper, a new computing scheme is described which utilizes spatial distribution of photons. The occupation of several optical paths by single-photons is adopted as qubits. This adoption gives several extension of processing capacity and computational functionality with a simple setup. An optical implementation of a solution algorithm on four-bit Deutsch-Jozsa problem is demonstrated with utilization of the spatial distribution of photons.  相似文献   

6.
Accuracy in measuring displacement in optical interferometers is limited by cyclic errors introduced by various leakage paths within the system. Existing techniques to reduce this nonlinearity do not work when there is large optical loss in the target path, such as for long-range measurements. We describe a new approach to reducing nonlinearity that overcomes these limitations. Based on phase modulation of the laser light, and requiring minimal additional components, experiments have demonstrated rejection of the effects of leakage in the presence of large optical loss.  相似文献   

7.
We report on an improved configuration to monitor a passive optical network with high quality in service. This proposed system comprises fiber-Bragg gratings, a 1 × 4 optical switch, and an optical time-domain reflectometry to diagnose the broken point in real time. It could simultaneously detect multioptical network units in a WDM PON. The remote-pump integrated residual pumping reused function is implemented. Broken points in different optical paths can be detected simultaneously even when the distances to the central office are identical. The bit-error rate testing is verified with a small power penalty, making it an ideal solution for the real-time monitoring in a WDM PON.  相似文献   

8.
A photonic approach to implementing a microwave channelized receiver based on dense wavelength division multiplexing using an optical comb is proposed. In the approach, a flat optical comb with 11 comb lines is generated using two cascaded Mach-Zehnder modulators. Frequency analysis of a microwave signal with multiple-frequency components is realized by using the optical comb together with an optical etalon with a periodic transfer function, a wavelength division multiplexer (WDM) and a photodetector array. The system is investigated numerically. Frequency measurement of a multi-frequency signal with a measurement range from 0.5-11.5 with an accuracy of ± 0.5 GHz is achieved. The reconfigurability of the system realized by tuning the comb-line spacing and the peak positions of the etalon is also evaluated. The improvement of the dynamic range of the system using an optimized periodic filter is also discussed.  相似文献   

9.
A solution for implementing multiple secure virtual private networks over a passive optical network using electronic code division multiple access is proposed and experimentally demonstrated. The multiple virtual private networking capability is experimentally demonstrated with 40 Mb/s data multiplexed with a 640 Mb/s electronic code that is unique to each of the virtual private networks in the passive optical network, and the transmission of the electronically coded data is carried out using Fabry-Perot laser diodes. A theoretical scalability analysis for electronic code division multiple access based virtual private networks over a passive optical network is also carried out to identify the performance limits of the scheme. Several sources of noise such as optical beat interference and multiple access interference that are present in the receiver are considered with different operating system parameters such as transmitted optical power, spectral width of the broadband optical source, and processing gain to study the scalability of the network.  相似文献   

10.
针对现有光学加工抛光头运动方式由于光栅形或螺旋形等对称扫描方式带来的运动轨迹间的迭代误差,提出随机轨迹抛光运动方式.随机轨迹方法通过随机轨迹算法随机生成镜面离散点的抛光顺序和抛光轨迹,采用随机轨迹驻留时间补偿方法控制镜面离散点的驻留时间,对各个点进行相应大小的材料去除.实验结果显示,随机轨迹方法产生的抛光运动轨迹表现为...  相似文献   

11.
We briefly study butterfly interconnection construction and propose an experimental approach to implementing multistage butterfly interconnection networks by using a special interconnection grating with the reflection ladder structure and liquid crystal light valves (LCLVs), and implementing the optical butterfly interconnections and primary optical digital logic operations. With this foundation, we analyse and discuss the features of the approach by computer simulations. In terms of our theoretical analyses, we improve the ring-circuit approach, based on the reflection ladder structure gratings, into a more suitable form based on transmission gratings, and we substitute the LCLVs with optoelectronic switches. Finally we give the experimental results of both the transmission grating and optoelectronic switches.  相似文献   

12.
We show how a half-adder logic circuit can be implemented on one molecule for a molecule exhibiting both S1→S0 and S2→S0 fluorescence. This is achieved by using both one photon S0→S1 excitation and consecutive S1→S2 excitation and establishing logic thresholds by utilizing the laser-induced photoquenching process. We present results pertaining to rhodamine and azulene molecules, in which, for the first time, an all optical half-adder logic circuit is implemented.  相似文献   

13.
Illuminating a magnetic material with femtosecond laser pulses induces complex ultrafast dynamical processes. The resulting optically detectable response usually contains contributions from both the optical properties and the magnetic degrees of freedom. Disentangling all the different components concurring to the generation of the total signal is a major challenge of contemporary experimental solid‐state physics. Here, this problem is tackled, addressing the purely optical, nonmagnetic artifacts on the time resolved two‐magnon stimulated Raman spectrum of an antiferromagnet, rationalizing the recent observation on the exchange energy modification upon photo‐excitation. It is demonstrated how the genuine dynamics of the magnetic eigenmode can be disentangled from the nonlinear optical effects, generated by cross phase modulation, on the femtosecond timescale. The introduced approach can be extended for the investigation of <100 fs dynamic processes by means of coherent Raman scattering.  相似文献   

14.
It is of great interest to investigate a freestanding GaN nanocolumn slab with bottom subwavelength nanostructures. A low-index buffer layer offers more paths accessible to emit light in air, and the nanostructures break the total internal reflection condition at the bottom surface to improve the light-extraction efficiency. The GaN nanocolumns and subwavelength nanostructures can also effectively suppress optical reflection over a broad wavelength range. In this work, the freestanding GaN nanocolumn slabs with bottom subwavelength nanostructures are implemented with a diameter of 1200 μm by a combination of self-assembly technique, silicon-on-insulator (SOI) technology, manufacturing of silicon, and epitaxial growth of GaN. Reflectance results experimentally show that optical reflection is greatly reduced by introducing the GaN nanocolumns and subwavelength nanostructures, and photoluminescence measurements demonstrate that the extracted light is significantly enhanced with the assistance of the low-index buffer layer and bottom subwavelength nanostructures.  相似文献   

15.
M. Ercsey-Ravasz  T. Roska 《Physica A》2009,388(6):1024-1030
Nowadays, Cellular Neural/Nonlinear Networks (CNN) are practically implemented in parallel, analog computers, showing a fast developing trend. It is important also for physicists to be aware that such computers are appropriate for implementing in an elegant manner practically important algorithms, which are extremely slow on the classical digital architecture. Here, CNN is used for optimization of spin-glass systems. We prove, that a CNN in which the parameters of all cells can be separately controlled, is the analog correspondent of a two-dimensional Ising type spin-glass system. Using the properties of CNN we show that one single operation on the CNN chip would yield a local minimum of the spin-glass energy function. By using this property a fast optimization method, similar to simulated annealing, can be built. After estimating the simulation time needed for this algorithm on CNN based computers, and comparing it with the time needed on normal digital computers using the classical simulated annealing algorithm, the results look promising: a speed-up of the order 1012 is expected already at 50×50 lattice sizes. Hardwares realized nowadays are of 128×128 size. Also, there seem to be no technical difficulties adapting CNN chips for such problems and the needed local control of the parameters could be fully developed in the near future.  相似文献   

16.
The paper presents an alternative novel approach to obtain all-optical logic. We show that XOR, NOT, and AND logic could be obtained by appropriately setting parameter of all-optical passive transistor. An AND gate followed by NOT gives NAND logic (building block) that, in principle can provide complete set of passive, fiber compatible “self-trapped family” all-optical logic gates (with Boolean completeness) and may find many possibilities in the area of all-optical computing. To give one example, we propose all-optical half adder.  相似文献   

17.
A new design approach for a three-step modified signed-digit (MSD) adder is presented that can be optically implemented using binary logic gates. The proposed scheme depends on encoding each MSD digits into a pair of binary digits using a two-state and multi-position encoding scheme. The proposed design algorithm depends on constructing the addition truth table of binary-coded MSD numbers and then using Karnaugh map to achieve output minimization. The optical binary logic gates are obtained by simply programming the decoding masks of a shadow-casting-based optical logic gate system. The proposed scheme results in a simple, compact, and efficient optical binary gate-based parallel addition system.  相似文献   

18.

The difficulties which the CMOS technology is facing at the nano scale has led to the investigation of quantum-dot cellular automata (QCA) nanotechnology and reversible logic as an alternative to conventional CMOS technology. In this paper, these two paradigms have been combined. Firstly, a new 3 × 3 reversible gate, SSG-QCA, which is universal and multifunctional in nature, is proposed and implemented in QCA using conventional 3-input majority voter based logic. By using the concept of explicit interaction of cells, the proposed gate is further optimized and then used to design an ultra-efficient 1-bit full adder in QCA. The universal nature has been verified by designing all the logic gates from the proposed SSG-QCA gate whereas the multifunctional nature is verified by implementing all the 13 standard Boolean functions. The proposed 3 × 3 gate and adder designs are then extensively compared with the existing literature and it is observed that the proposed designs are ultra-efficient in terms of both area and cost in QCA technology. In addition to this energy dissipation analysis for different scenarios is also done on all the designs and it is observed that the proposed designs dissipate minimum energy thereby making them suitable for ultra-low power designs.

  相似文献   

19.
A cavity quantum electrodynamics (QED) based approach for transferring quantum state between quantum nodes has been proposed, wherein a rubidium (87Rb) atom trapped inside a two-mode optical cavity forms the quantum node and photons serve as the information carrier between two such nodes. Information is encoded into polarized photon states generated through the application of a system of lasers. The focus is made on the phase-space analysis of the approach, wherein two subspaces of the hyperfine energy levels with magnetic sub-levels of rubidium (87Rb) atom represent the logic states ‘0’ and ‘1’. The system of lasers initiates a cavity assisted Raman process which, in turn, generates a right- or left-circularly polarized photon depending on the logic state of the transmit node. Once the photon is received (at the receive node), the logic state of the transmit node is restored into the receive node through a cavity QED process.  相似文献   

20.
苏涛  奚玮 《光子学报》2005,34(7):1113-1116
利用正交双路光纤传输光电流信号的处理方法,满足了光纤电流互感器在电力系统暂态保护应用中的实时处理要求.此方法可从正交双路光信号中直接提取两路电流信息,减小了光路传输不理想对电流测量值的影响.结合模数变换过采样技术和先进的数字信号处理技术,提高了系统对暂态故障的响应速度,改进了检测性能.实验表明,此方法在暂态信号的采集和实时处理方面,比现有方法的迟延小且精度高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号