首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
EAST���ϲ��Ͼ�Ե����������Ԫ����   总被引:3,自引:1,他引:3  
用有限元法对EAST装置磁体系统的高性能氦气密复合材料绝缘子性能作了全面的分析.结果表明:绝缘子可满足承受EAST装置耐电压15kV的使用要求;热应力对绝缘子的绝缘层影响最大,外力对绝缘层应力的影响可忽略;EAST复合材料绝缘子具有优良的低温力学性能.  相似文献   

2.
We demonstrated a robust power-scalable Kerr-lens mode-locked(KLM) operation based on a Yb:YAG thin-disk oscillator.15-W,272-fs pulses were realized at a repetition rate of 86.7 MHz with an additional Kerr medium and a 2.5 mm hard aperture in the cavity.247-fs pulses with an average power of 11 W could also be obtained by using a 2.4 mm hard aperture.Based on this shorter pulse,high efficient second-harmonic generation(SHG) was performed with a 1.7-mm-long Li B3O5(LBO) crystal.The SHG laser power was up to 5 W with the power fluctuation RMS of 1% measured over one hour.  相似文献   

3.
Tsunekane M  Taira T 《Optics letters》2006,31(13):2003-2005
300 W continuous-wave operation of a diode edge-pumped, hybrid (single-crystal/ceramic) composite,Yb3+:YAG microchip laser with a 5 mm diameter and 300 microm thickness single-crystal core uniformly bonded to a water-cooled heat sink by a new Au-Sn soldering system has been demonstrated. The beam quality factor M2 follows the mode mismatch between the core and the fundamental mode and was improved to 17 with a maximum output power of 230 W. A thermally induced convex mirror with a spherical radius of curvature ranging from -2.5 to -1.5 m was observed; the radius of curvature decreases through thermal deformation of the microchip as the pump power increases.  相似文献   

4.
Based on quasi-three-level system, a numerical model of continuous wave thin disc laser is proposed. The fluorescence concentration quenching (FCQ), refractive index depending concentration effects and temperature distribution in the gain medium have been taken into account in the model. The first and second phenomena are not included in previously models. The model is used to determine optimum design parameters and to calculate the influence of various parameters like temperature, number of pump beam passes, active ions concentration and the crystal thickness on the operational efficiency of the laser. This model shows that for higher doping concentrations (>15%) the optical efficiency is decreased due to fluorescence concentration quenching. Our results are excellently in agreement with experimental results.  相似文献   

5.
介绍了基于Yb:YAG薄片的16通泵浦耦合系统的设计方法,建立了泵浦系统的模型,对模型进行了模拟。以16通泵浦耦合系统为基础,通过微通道冷却,利用国产单片直径10 mm、厚度为250 μm、掺杂原子分数为10% 的Yb:YAG薄片进行了实验研究。在泵浦功率为69.5 W时,采用曲率半径为-800 mm的输出镜,获得了27 W的1 030 nm连续激光输出,光光转换效率为38.8%;采用曲率半径为-2 000 mm的输出镜,获得了18.65 W的1 030 nm连续激光输出,光束质量平分因子小于等于1.1,光光转换效率为26.8%。  相似文献   

6.
 介绍了基于Yb:YAG薄片的16通泵浦耦合系统的设计方法,建立了泵浦系统的模型,对模型进行了模拟。以16通泵浦耦合系统为基础,通过微通道冷却,利用国产单片直径10 mm、厚度为250 μm、掺杂原子分数为10% 的Yb:YAG薄片进行了实验研究。在泵浦功率为69.5 W时,采用曲率半径为-800 mm的输出镜,获得了27 W的1 030 nm连续激光输出,光光转换效率为38.8%;采用曲率半径为-2 000 mm的输出镜,获得了18.65 W的1 030 nm连续激光输出,光束质量平分因子小于等于1.1,光光转换效率为26.8%。  相似文献   

7.
边缘抽运复合Yb:YAG/YAG薄片激光器设计与功率扩展   总被引:3,自引:1,他引:3       下载免费PDF全文
柳强  巩马理  潘圆圆  李晨 《物理学报》2004,53(7):2159-2164
设计了边缘抽运复合Yb:YAG/YAG薄片激光器.薄片激光器的显著优点是热梯度和激光传输方向相同,减小了横向的温度梯度,解决了高功率激光器冷却和高功率抽运的矛盾,避免了放大的自发辐射. 与高功率棒状和板条激光器相比,一维空间冷却理论和边缘抽运理论可以获得更高的功率输出,列举了两种高功率Yb:YAG/YAG薄片激光器设计实例. 关键词: 固体激光器 薄片激光 边缘抽运 功率扩展  相似文献   

8.
Micro-perforated sound absorbers with sub-millimeter size holes can provide high absorption coefficients. This paper presents results of work on the development of an effective single layer micro-perforated sound absorber from the commercial composite material Parabeam® with micro diameter holes drilled on one side. Parabeam® is used as a structural material made from a fabric woven out of a E-glass yarn and consists of two decklayers bonded together by vertical piles in a sandwich structure with piles (thick fibers) woven into the decklayers. The paper includes, the analytical model developed for prediction of absorption coefficients, finite element solution using commercial software MSC.ACTRAN and experimental results obtained from impedance tube measurements. A simple optimization is performed based on the developed models to obtain an efficient absorber configuration. It has been anticipated that several different and interesting applications can be deduced by combining structural and sound absorption properties of this new micro-perforated absorber.  相似文献   

9.
YBa2Cu3Oy is an orthotropic material with different material properties in a, b and c directions, such as Young’s modulus, coefficient of thermal expansion (CTE), and thermal conductivity. It is assumed that the material properties of inhomogeneous high temperature superconductor (HTS) vary with different height coordinate and temperature. A model is presented in this paper to calculate the thermal stress of inhomogeneous HTS when temperature decreases from ambient to operating conditions (cryogenic temperatures). By fitting a second order polynomial to the experimental data, value of the material properties of inhomogeneous HTS can be obtained. Then, through the proposed graded finite element method, the coupled thermo-mechanical equations were solved numerically. The numerical results show that the temperature profiles distribute the function of time after soaking. It is notable that the temperature profile reaches steady in a very short period of time, so the thermal stress suddenly increases to a very high level for a bulk superconductor. It is also shown that the closer to the sample internal region it is, the larger the heat fluxes are. Besides, the maximum tensile stresses, i.e. the peeling stresses, occur near bottom corner of inhomogeneous HTS. It is intended that the model presented in this paper could be useful to researchers who are interested in mechanical properties of inhomogeneous HTS.  相似文献   

10.
Quantitative ultrasound for bone assessment is based on the correlations between ultrasonic parameters and the properties (mechanical and physical) of cancellous bone. To elucidate the correlations, understanding the physics of ultrasound in cancellous bone is demanded. Micro-scale modeling of ultrasound propagation in cancellous bone using the finite-difference time-domain (FDTD) method has been so far utilized as one of the approaches in this regard. However, the FDTD method accompanies two disadvantages: staircase sampling of cancellous bone by finite difference grids leads to generation of wave artifacts at the solid–fluid interface inside the bone; additionally, this method cannot explicitly satisfy the needed perfect-slip conditions at the interface. To overcome these disadvantages, the finite element method (FEM) is proposed in this study. Three-dimensional finite element models of six water-saturated cancellous bone samples with different bone volume were created. The values of speed of sound (SOS) and broadband ultrasound attenuation (BUA) were calculated through the finite element simulations of ultrasound propagation in each sample. Comparing the results with other experimental and simulation studies demonstrated the capabilities of the FEM for micro-scale modeling of ultrasound in water-saturated cancellous bone.  相似文献   

11.
Isogeometric Analysis (IGA) can bridge the gap between geometrical and numerical modeling. To this end, the same basis functions used in Computer Aided Design are applied to represent geometry and approximate physical field in analysis. In this paper, the IGA is firstly introduced to finite element method (FEM) for interior acoustic problems. The domain is parameterized by Non-Uniform Rational B-Spline (NURBS) in the algorithm, which simplifies the mesh generation greatly and furthermore supplies an exact representation of curved boundaries. In addition, the IGA FEM possesses a distinct feature of flexible order-elevation technique without modifying the geometry. Several numerical examples are presented to validate the accuracy and demonstrate the merits of the IGA FEM in the analysis of interior acoustic problems.  相似文献   

12.
Using front face-pumped compact active mirror laser (CAMIL) structure, we have demonstrated an Yb:YAG/YAG composite ceramic disk laser with pumping wavelength at 970 nm. The laser has been operated in both continuous-wave (CW) and Q-switching modes. Under CW operation, laser output power of 1.05 W with 2% transmission output coupler was achieved at the wavelength of 1031 nm. Q- switched laser output was gotten by using an acousto-optic Q-switch. The repetition rate ranged from 1 to 30 kHz and the pulse width varied from 166 to 700 ns.  相似文献   

13.
Laser ablation constitutes the basis of a number of techniques aiming at the processing and diagnosis of polymeric coatings on a variety of substrates. In all these applications, however, the issue is raised about the mechanical effects of the procedure on the substrate integrity. To this end, we employ finite element modeling for simulating the mechanical effects of UV laser ablation on a polymer specimen, with particular emphasis on the structural modifications that may be induced at areas away from the ablation spot. The cylindrical specimen consists of a poly(methylmethacrylate) (PMMA) film on a silica substrate. The analysis shows that stresses of high enough amplitude may propagate to distances far away from the irradiated spot and may induce deleterious mechanical deformations (e.g., cracks or delaminations). The dependence of the distribution of the tensile stresses on the thickness of the two components, as well as on size of the ablation spot area, is examined. Finally, the possibility of growth of pre-existing defects is shown. The results are overall in very good agreement with experimental observations.  相似文献   

14.
Jiang R  Zhou Z  Lv X  Zeng S  Huang Z  Zhou H 《Ultrasonics》2012,52(5):643-649
Thermal effects greatly influence the optical properties of the acousto-optic deflectors (AODs). Thermal analysis plays an important role in modern AOD design. However, the lack of an effective method of analysis limits the prediction in the thermal performance. In this paper, we propose a finite element analysis model to analyze the thermal effects of a TeO2-based AOD. Both transducer heating and acoustic absorption are considered as thermal sources. The anisotropy of sound propagation is taken into account for determining the acoustic absorption. Based on this model, a transient thermal analysis is employed using ANSYS software. The spatial temperature distributions in the crystal and the temperature changes over time are acquired. The simulation results are validated by experimental results. The effect of heat source and heat convection on temperature distribution is discussed. This numerical model and analytical method of thermal analysis would be helpful in the thermal design and practical applications of AODs.  相似文献   

15.
A compact and simple design for an LDA-end-pumped intracavity doubling high-power blue laser with a composite Nd:YAG laser on the 4F3/2 to 4I9/2 laser transition in a flat-curved cavity is demonstrated. The nonlinear crystal used in the experiment is an LBO crystal cut for phase-matching type I. Through the thermo-lensing effect of the laser crystal at high-pumped power, the optimum mode-matched and efficient intracavity doubling are realized at the same time. The maximum output power at 473 nm was 600 mW when the absorbed, pumped power of 15 W, and the optical-to-optical conversion efficiency is 4%. The stability of blue output power is 3.2% within 2 h.  相似文献   

16.
Characterization of computational mesh’s quality prior to performing a numerical simulation is an important step in insuring that the result is valid. A highly distorted mesh can result in significant errors. It is therefore desirable to predict solution accuracy on a given mesh. The HiFi/SEL high-order finite element code is used to study the effects of various mesh distortions on solution quality of known analytic problems for spatial discretizations with different order of finite elements. The measured global error norms are compared to several mesh quality metrics by independently varying both the degree of the distortions and the order of the finite elements. It is found that the spatial spectral convergence rates are preserved for all considered distortion types, while the total error increases with the degree of distortion. For each distortion type, correlations between the measured solution error and the different mesh metrics are quantified, identifying the most appropriate overall mesh metric. The results show promise for future a priori computational mesh quality determination and improvement.  相似文献   

17.
H. Liu  M. Gong 《Optics Communications》2010,283(6):1062-467
Corner-pumping is a new pumping scheme in diode-pumped all-solid-state lasers, having such advantages as high pump efficiency, favorable pump uniformity and low cost. Compact corner-pumped Nd:YAG/YAG composite slab lasers at 1064 nm with low or medium output powers and high efficiency are demonstrated in this paper. Combined with intracavity frequency doubling by a LBO crystal, a corner-pumped Nd:YAG/YAG composite slab 532 nm green laser with a stable output is realized successfully. The experimental results show that corner-pumping can reduce laser costs greatly, release the thermal effects of slab crystals and improve the output beam quality, and that the new pumping scheme is feasible in the design of diode-pumped all-solid-state lasers with low or medium output powers.  相似文献   

18.
Three-dimensional modeling of particle impacting behavior in cold spraying by using ABAQUS/Explicit was conducted for copper and other materials. Various combinations of calculation settings concerning material damage, Arbitrary Lagrangian Eulerian adaptive meshing, distortion control and contact interaction were examined. The effects of meshing size and particle size on the impact behavior were analyzed compared to the previous results. The results show that the simulations with material damage cope well with the element excessive distortion and the resultant output is more reasonable than that obtained without material damage. In addition, the meshing size has less effect on the output with the material damage than without material damage. Although particle size has little effect on the morphologies of the deformed particles, it has some effect on the failure of elements at contact interfaces. The critical velocity for particle deposition could be estimated given the appropriate material properties.  相似文献   

19.
Early stage delaminations in composite materials tend to be closed at rest. Inspection with traditional linear ultrasonic techniques generally fails to diagnose and locate such imperfections. However, if undetected and left untreated, incipient defects may gradually grow within the material and eventually lead to failure of the component. Kissing bonds or clapping contacts inherently demand a non-linear diagnostic method, applying a finite excitation amplitude that is able to overcome an activation threshold to open and close the contact. In order to obtain a better understanding and analysis of the macroscopic non-linear behavior that can be observed at the component level, we developed and investigated the results of a finite element model for a composite material containing a single circular delamination. The model makes use of local node splitting and the non-linear constitutive behavior is implemented by means of spring-damper elements at the delamination interface. The results of this parametric study allow a better insight in the behavior of the excited delamination in experimental conditions, including the appearance of localized subharmonics and harmonics of the excitation frequency. Based on the developed model, two different detection and localization techniques (using either a single frequency or a sweep excitation) were demonstrated to determine position, shape, depth and orientation of one or multiple delaminations.  相似文献   

20.
An investigation of thermal effects in a high-power Nd:YAG disk-type solid state laser pumped with different pump beam transverse profiles is carried out by numerical simulation based on the finite element method (FEM). Impact of the heat sink on the thermal effects is included in the simulation. The distribution of first principle stress, thermally induced birefringence, including the distribution and variation of the birefringence loss, are studied. The characteristics of the phase variation are analyzed with consideration of the temperature gradient, deformation, strain and thermal stress. Thermal lensing is explored as a function of pump power and of the radius pumped with different pump beam transverse profiles. The non-parabolic part of optical phase distortion is simulated. Furthermore, the characteristics of the bi-focus of the disk laser are also studied. Experiments on the maximum tensile stress distribution and depolarization loss are carried out. The presented calculations are in qualitative agreement with the experimental observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号