首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel scheme is proposed to transform a Gaussian pulse to a millimeter-wave frequency modulation pulse by using an apodized Moiré fiber Bragg grating in radio-over-fiber system. The relation between the input and output pulses is analyzed theoretically by Fourier transformation method and the requirements for the proposed fiber grating are presented. An apodized Moiré fiber Bragg grating is designed and its characteristics are studied. It is shown that the proposed device is feasible, and the new scheme is believed to be an effective solution for the generation of millimeter-wave sub-carrier in future radio-over-fiber systems.  相似文献   

2.
Modal phase-matching second harmonic generation in uniformly poled Bragg fiber is theoretically proposed. The very low group velocity of the modes in Bragg fiber near the in-band cutoff frequencies leads to high nonlinear conversion efficiency comparable to that of the periodically poled conversional fiber. The subsequence phase-matched bandwidth reduction by slow light can be retrieved in a certain degree through structure parameters optimization.  相似文献   

3.
A high sensitivity fiber-optic torsion sensor, which can measure twist rate and determine twist direction simultaneously based on a novel ultra-long-period fiber grating (ULPFG) with a period of up to several millimeters, is proposed and demonstrated. Such an ULPFG is fabricated by using the high-frequency CO2 Laser pulses exposure technique. The unique torsion characteristics of the ULPFG are simply analyzed by using the mode coupling theory and the birefringence effect. The experimental results show that the high order resonant wavelengths of the ULPFG have higher torsion sensitivities, which is several times higher than that of the normal LPFG. In addition, an intensity-type demodulation approach used to realize real-time torsion measurement is proposed and demonstrated based on the edge filtering effect of the ULPFG.  相似文献   

4.
Connecting an input port and an output port of a single-mode fiber coupler to form a fiber-loop, and making the time delay of the fiber-loop odd multiple of the half-period of the input optical pulse stream, we can obtain a pulse stream with multiplying repetition rate at the other output port of the coupler. Utilizing three loop-connecting fiber couplers cascaded, a pulse stream with eight times the repetition rate is achieved. Supported by the 863 High Technology Program of China (No. 863-317-9602-03-2) and by the Thesis Foundation of Northern Jiaotong University.  相似文献   

5.
A simple sensing method for simultaneous measurement of temperature and strain is investigated by using a Sagnac fiber loop mirror composed of a polarization-maintaining photonic crystal fiber (PM-PCF) incorporating an erbium-doped fiber (EDF). Amplified spontaneous emission created by a pumped EDF is transmitted to a Sagnac fiber loop mirror. The interference between two counter-propagating signals in a Sagnac fiber loop mirror generates a periodic transmission spectrum with respect to wavelength. When external temperature is increased, the transmission peak power reduces because the amplified spontaneous emission of the EDF is decreased by the applied temperature change (0.04 dB/°C). The peak wavelength is shifted into the shorter wavelength because of the negative temperature dependence of the birefringence of the PM-PCF (0.3 pm/°C). As the applied strain increases, the peak wavelength of the transmission spectrum of the Sagnac loop mirror incorporating the EDF shifts into a longer wavelength (1.3 pm/με) because the phase change of the proposed sensing probe is directly proportional to the applied strain. The transmission peak power, however, is not changed by the applied strain. Since the source and the sensing probe are integrated, the overall system configuration is significantly simplified without requiring any additional broadband light source. Therefore, it is possible to simultaneously measure temperature and strain by monitoring the variation of transmission peak power and peak wavelength, respectively.  相似文献   

6.
A stable and low costless tunable erbium doped fiber ring laser using fiber Bragg grating-assisted add-drop filter is proposed and demonstrated. A stable laser output is obtained with a 4 nm tuning range. The power fluctuation, full-width at half maximum and SMSR are measured to be less than 0.50 dB, smaller than 0.015 nm and better than 55 dB in this tuning range.  相似文献   

7.
A new nonlinear dispersion flattened photonic crystal fiber with low confinement loss is proposed. This fiber has threefold symmetry core. The doped region in the core and the big air-holes in the 1st ring can make high nonlinearity in the PCF. And the small air-holes in the 1st ring and the radial increasing diameters air-holes rings in cladding can be used to achieve the dispersion properties of the PCF. We can achieve the optimized optical properties by carefully selecting the PCFs structure parameters. A PCF with flattened dispersion is obtained. The dispersion is less than 0.8 ps/(nm km) and is larger than −0.7 ps/(nm km) from 1.515 μm to 1.622 μm. The nonlinear coefficient is about 12.6456 W−1 km−1, the fundamental mode area is about 10.2579 μm2. The confinement loss is 0.30641 dB/km. This work may be useful for effective design and fabrication of dispersion flattened photonic crystal fibers with high nonlinearities.  相似文献   

8.
A fast reusable water sensor for long-distance real-time submersion monitoring was fabricated using a macrobending-sensitive fiber (MSF). The proposed water sensor consists of floating matter, periodic macrobending deformers, and a MSF. In this structure, the floating matter moves up and down according to the buoyant force of water, thereby controlling the bending loss of the MSF and allowing the proposed sensor to detect submersion. A basic bending experiment was conducted using a MSF and macrobending deformer, and the results used to fabricate an efficient water sensor. In contrast to existing sensors where the optical loss increases in the case of submersion, the optical loss of the fabricated sensor decreases due to the buoyant force when the selected area is submerged. As such, the fabricated sensor is able to transmit submersion information further than sensors that detect submersion by increasing the optical loss, and it is unaffected by environmental factors, such as humidity and pollutants in the water. The proposed sensor detects submersion by monitoring a 16 dB optical power change of 1550 nm, and the change in the optical power of the fabricated sensor is only affected by the buoyant force. In addition, the proposed water sensor quickly returns to its initial state when the water disappears, and the insertion loss when it is connected to a single-mode fiber (SMF) at both ends using a connector is only −1.2 dB at 1550 nm.  相似文献   

9.
In this paper, magnetic iron fibers of 3–10 μm diameter and an adjustable aspect ratio were synthesized successfully by a method involving pyrolysis of carbonyl under a magnetic field. A surface modification technology was also investigated. The electromagnetic parameters of the iron-fiber–wax composites were measured using the transmission/reflection coaxial line method in the microwave frequency range of 2–18 GHz. The results show that the prepared iron-fiber–wax composites exhibit high magnetic loss that can be further improved after phosphating. On the other hand, the complex permittivity was significantly decreased after phosphating. As a result, this kind of iron fiber may be useful for thin and lightweight radar-absorbing materials.  相似文献   

10.
Group delay in Bragg grating with linear chirp   总被引:1,自引:0,他引:1  
An analytic solution for Bragg grating with linear chirp in the form of confluent hypergeometric functions is analyzed in the asymptotic limit of long grating. Simple formulas for reflection coefficient and group delay are derived. The simplification makes it possible to analyze irregularities of the curves and suggest the ways of their suppression. It is shown that the increase in chirp at fixed other parameters decreases the oscillations in the group delay, but gains the oscillations in the reflection spectrum. The asymptotic considerations are in good agreement with numerical calculations.  相似文献   

11.
We experimentally demonstrate a wavelength-tunable erbium-doped fiber laser that is composed of a ring cavity and a single-mode fiber Sagnac interferometer in a new and simple arrangement. We find that the fiber laser output wavelength is tunable by adjusting the filter effect of the Sagnac fiber loop through a fiber polarization controller set there. The quasi-single-wavelength continuously tunable laser outputs could be achieved within some wavelength range. The multi-wavelength laser outputs could also be observed under some appropriate settings of the polarization controller. A theoretical demonstration of the wavelength tunability about the transmission-type Sagnac loop filter has also been achieved using the Jones calculus theory.  相似文献   

12.
We have demonstrated a continuous phased-array antenna beam former based on a variable photonics true-timedelay unit consisting of four chirped gratings. The system is suitable for the phased-array antenna beam forming at frequencies up to 20 GHz.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

13.
This paper presents a tunable transversal filter working with a single optical carrier at constant wavelength. The filter consists of a set of chirped gratings whose time delay is tuned with respect to the emission wavelength of a fiber laser by a piezoelectric actuator; extra lengths of fiber are inserted in the filter arms in order to avoid interferences between signals reflected in different gratings. Two and three taps filters are experimentally demonstrated, the filters transfer function is electronically tuned within the free spectral range.  相似文献   

14.
The delay of optical signal is determined by the refractive index and length of optical fiber, and temperature would have an intense influence on the index. To establish the relationship between refractive index and temperature, the temperature characteristics of refractive index was analyzed and the thermo-optical coefficient equation was derived according to the polarization of the induced electric dipole moment in SiO2 optical fiber. A measuring system based on optical fiber delay was carried out to measure the index within the temperature range of −30 °C to 70 °C and the experimental result was compared with the theoretical result. The final result shows that the relationship between refractive index and temperature is linear in the temperature range of discussion.  相似文献   

15.
A simple dispersion measurement technique has been proposed and demonstrated by using the self-seeding laser oscillation of a Fabry-Perot laser diode through an optical closed-loop path. When the multi-mode optical pulses emitted from the laser are re-injected into the laser after traversing a fiber-under-test, a single mode laser oscillation occurs through the closed-loop path due to the group velocity difference between the pulses of different wavelengths. We measured the dispersion parameter of the fiber-under-test from the modulation frequency changes required to induce single-mode laser oscillations through the optical closed-loop path. The maximum measurement error was less than 1.5% for the optical fibers as compared with a commercial instrument.  相似文献   

16.
We simulate the spectrum characteristics of fibre Bragg grating (FBG) with non-uniform temperature using the transmission matrix method, and the results are analysed. It is found that firstly the modulated coefficient of average refractive index is a very important parameter that influences the spectrum characteristic of the fibre Bragg grating, and secondly the spectrum curves are different in different temperature fields at the same parameter. Hence, we can determine the metrical temperature by analysing the spectrum of fibre Bragg grating.  相似文献   

17.
In this paper, we analyzed the properties of fiber Bragg grating F-P cavity with different grating parameters at two ends. The features of transmission spectra and group velocity were investigated under different parameters including slight increase for the differences of the lengths of the two gratings, the periods of the two gratings, the refractive index modulation depths of the two gratings. The characteristics of the slow light in fiber Bragg grating and fiber Bragg grating F-P cavity were also compared. The results of this study can be useful for actual experiments and applications in using the fiber Bragg grating F-P cavity in the slow light.  相似文献   

18.
Y. Jiang  Y. Leng  X. Chen  X. Li  Z. Xu 《Optics Communications》2008,281(9):2449-2453
An acoustic-optics programmable dispersive filter (AOPDF) was first employed to actively control the linearly polarized femtosecond pump pulse frequency chirp for supercontinuum (SC) generation in a high birefringence photonic crystal fiber (PCF). By accurately controlling the second order phase distortion and polarization direction of incident pulses, the output SC spectrum can be tuned to various spectral energy distributions and bandwidths. The pump pulse energy and bandwidth are preserved in our experiment. It is found that SC with broader bandwidth can be generated with positive chirped pump pulses except when the chirp value is larger than the optimal value, and the same optimal value exists for the pump pulses polarized along the two principal axes. With optimal positive chirp, more than 78% of the pump energy can be transferred to below 750 nm. Otherwise, negative chirp will weaken the blue-shift broadening and the SC bandwidth.  相似文献   

19.
A novel multi-wavelength erbium-doped fiber laser operating in C-band is proposed and successfully demonstrated. The wavelength interval between the wavelengths is about 0.22 nm. The 3 dB bandwidth of the laser is about 0.012 nm, and the output power reaches 4.8 mW. By using a high birefringence fiber ring mirror (HiBi-FLM) and a tunable FBG, the laser realizes switchable and tunable characteristic. The mode hopping can be effectively prevented. Moreover, this laser can improve wavelength stability significantly by taking advantage of an un-pumped Er3+-doped fiber at the standing-wave section. The laser can operate in stable narrow-line-width with single-, dual-wavelength, and unstable triple-wavelength output at room temperature.  相似文献   

20.
Microjoule supercontinuum generation is demonstrated using a large-mode-area photonic-crystal fiber (PCF) pumped by an amplified stretched-pulse output of a mode-locked Cr:forsterite laser. A PCF with a mode area of 380 μm2 is employed to transform 300-fs Cr:forsterite laser pulses with a peak-power of a few megawatts into a supercontinuum radiation with a spectrum spanning from 700 to 1800 nm and a total energy of 1.15 μJ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号