首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In this paper we report the upconversion emission for the 4S3/24I15/2 Stark components of Er3+ ion-doped fluorozirconate glass at T=2 K. The spectrum shows only seven peaks, one less than expected theoretically, being missing the peak at the wave number 17,996 cm−1 (λ=555 nm). This result is compared with the luminescence for the same transition at the same conditions which exhibits the eight expected lines. Such a discrepancy is attributed to a re-absorption process (ESRA) between the energy levels 4I13/2 and 2H9/2.  相似文献   

2.
Er-doped silicon oxide-zirconia thin film samples were prepared by rf co-sputtering. Chemical composition was determined by energy-dispersive spectroscopy (EDS) and X-ray diffraction (XRD) showed that the films were amorphous. X-ray photoelectron spectroscopy (XPS) measurements showed that the matrix of the films consists of a ZrO2 main body with pockets of silicon oxide, containing no Si nanoparticles (np) distributed within it. The samples were annealed to 700 °C. Er3+: 2H11/24I15/2, 4S3/24I15/2, 4F9/24I15/2, 4I11/24I15/2, and 4I13/24I15/2 emissions were observed. Excitation wavelength dependence and excitation photon flux dependence results for the 4I13/24I15/2 emission were explained as due to resonant energy transfer from defects in the matrix. 4I11/24I15/2 emission dependence on 4I13/24I15/2 emission showed that no energy transfer upconversion (ETU) processes were involved and that it was due only to branching from higher levels. 4I13/24I15/2 peak intensity decay was interpreted as corresponding to two different populations of Er3+ ions. Energy transfer from the defects to the Er ions is very efficient. We concluded that Er-doped silicon oxide-zirconia is a promising material for photonic applications, being excitable at low pumping powers and producing broad-band 4I13/24I15/2 emission.  相似文献   

3.
Near infrared-visible upconversion in Er3+ doped orthorhombic PbF2 compound is investigated. It is experimentally observed that the red emission intensity increases monotonously with Er3+ concentration increase, while the green emission intensity first increases and then decreases. Based on the rate-equation, the energy transfers involved in the upconversion processes have been explored. It is shown that due to the different multipolar nature for the energy transfer processes of 2H11/2 (4S3/2)+4I15/24I9/2+4I13/2 and 4I11/2+4I11/24F7/2+4I15/2, the green and red upconversion emissions depend on Er3+ concentration in different ways. The theoretical results are in good agreement with the experimental observation. It is shown that the upconverted emission bands can be tuned by controlling Er3+ concentration in orthorhombic PbF2 compound, which has many photonic applications under NIR excitation.  相似文献   

4.
The competition between two laser transitions in Er:YLiF4 (4S3/2 → 4I15/2 at 551 nm and 4S3/2 → 4I13/2 at 850 nm) is studied using a model based on rate equations. The laser emission is pumped by upconversion at 795 nm; for comparison, we also discuss upconversion pumping by another mechanism, at 970 nm. The conditions that favor laser emission in various regimes on these two transitions are found.  相似文献   

5.
The luminescence properties of Er3+ doped alkali tellurite [ TeO2-M2O (M=Li, Na and K)] glasses are investigated. Infrared to visible upconversion emissions are observed at 410, 525, 550 and 658 nm using 797 nm excitation. These bands are assigned to the 2H9/2  →4I15/2, 2H11/2  →4I15/2, 4S3/2  →4I15/2, 4F9/2  →4I15/2 transitions of Er3+ respectively. Detailed study reveals that the 2H9/2  →4I15/2 transition at 410 nm involves a three-step process while the other transitions involve two-steps. Excitation with 532 nm radiation gives additional bands at 380, 404, 475 and 843 nm wavelengths due to the 4G11/2  →4I15/2, 2P3/2  →4I13/2, 2P3/2  →4I11/2, and 4S3/2  →4I13/2 transitions, respectively, along with the bands observed on NIR excitation. The fluorescence yield is found to be largest for the TeO2-Na2O glass. The lifetime of the 4S3/2 level has been measured for all the three cases and used to explain the upconversion mechanisms. The fluorescence intensity ratio corresponding to the two thermally coupled levels (2H11/2, 4S3/2) has been used to estimate the temperature of the glass. It is observed that the temperature sensing capacity of TeO2-Li2O glass is better than the other two glasses.  相似文献   

6.
Structural and infrared-to-visible upconversion fluorescence properties of Er3+/Yb3+-codoped oxychloride lead-germanium-bismuth glass have been studied. The Raman spectrum investigation indicates that PbCl2 plays an important role in the formation of glass network, and has an important influence on the upconversion luminescence owing to lower phonon energy. Intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions 2H11/24I15/2, 4S3/24I15/2, and 4F9/24I15/2, respectively, were observed at room temperature. The quadratic dependence of the 525, 546, and 657 nm emissions on excitation power indicates that a two-photon absorption process occurs under 975 nm excitation.  相似文献   

7.
The spectroscopic characteristics and fluorescence dynamics for Yb3+/Ho3+:NaY(WO4)2 crystal were investigated. The parameters of oscillator strengths, the spontaneous transition probabilities, the fluorescence branching ratios, the radiative lifetimes and the stimulated emission cross sections have been calculated based on Judd-Ofelt theory and Füchtbauer-Ladenburg method. The energy transfer efficiency from Yb3+ to Ho3+ was 65.85%. The green emission (530-570 nm) corresponding to (5F4, 5S2)→5I8 transition, red emission (640-670 nm) due to 5F55I8 transition and NIR emission (740-770 nm) attributed to (5F4, 5S2)→5I7 transition were observed on 974 nm excitation at room temperature. Under low pump power, the intensity of green light emission is weaker than that of the red light, while under high pump power, the case is on the contrary. The upconversion is based on the two-photon process either the energy transfer from Yb3+ ions or by the excited state absorption. The proposed mechanisms of upconversion emissions were provided.  相似文献   

8.
Infrared-to-visible upconversion fluorescence property of Er3+/Yb3+-codoped novel bismuth-germanium glass under 975 nm LD excitation has been studied. Intense green and red emissions centered at 525, 546 and 657 nm, corresponding to the transitions 2H11/24I15/2, 4S3/24I15/2, and 4F9/24I15/2, respectively, were observed at room temperature. The quadratic dependence of the 525, 546 and 657 nm emissions on excitation power indicates that a two-photon absorption process occurs. The structure of the bismuth-germanium glass has been investigated by peak-deconvolution of FT-Raman spectrum, and the structural information was obtained from the peak wavenumbers. This novel bismuth-germanium glass with low maximum phonon energy (∼750 cm−1) can be used as potential host material for upconversion lasers.  相似文献   

9.
B.S. Cao  Y.Y. He  M. Song 《Optics Communications》2011,284(13):3311-3314
Crystalline structures and infrared-to-visible upconversion luminescence spectra have been investigated in 1 mol% Er3+, 10 mol% Yb3+ and 0-20 mol% Li+ codoped TiO2 [1Er10Yb(0-20)Li:TiO2] nanocrystals. The crystalline structures of 1Er10Yb(0-20)Li:TiO2 were divided into three parts by the addition of Yb3+ and Li+. Both green and red upconversion emissions were observed from the 2H11/2/4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions of Er3+ in Er3+-Yb3+-Li+ codoped TiO2, respectively. The green and red upconversion emissions of 1Er:TiO2 were enhanced significantly by Yb3+ and Li+ codoping, in which the intensities of green and red emissions and the intensity ratio of green to red emissions (Igreen/Ired) were highly dependent on the crystalline structures. The significant enhanced upconversion emissions resulted from the energy migration between Er3+ and Yb3+ as well as the distortion of crystal field symmetry of Er3+ caused by the dissolving of Li+ at lower Li+ codoping concentration and the phase transformation at higher Li+ concentration. It is concluded that codoping with ions of smaller ionic radius like Li+ can efficiently improve the upconversion emissions of Er3+ or other rare-earth ions doped luminsecence materials.  相似文献   

10.
Er3+-doped oxychloride germanate glasses have been synthesized by conventional melting and quenching method. Structural and thermal stability properties were obtained based on the Raman spectra and differential thermal analysis, indicating that PbCl2 plays an important role in the formation of glass network and has an important influence on the maximum phonon energy and thermal stability of host glasses. Intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions 2H11/24I15/2, 4S3/24I15/2, and 4F9/24I15/2, respectively, were observed at room temperature. With increasing PbCl2 content, the intensity of green (525 and 546 nm) emissions increases significantly, while the red (657 nm) emission increases slowly. The results indicate that PbCl2 has more influence on the green emissions than the red emission in oxychloride germanate glasses. The possible upconversion luminescence mechanisms has also been estimated and discussed.  相似文献   

11.
This paper reports on the absorption, visible and near-infrared luminescence properties of Nd3+, Er3+, Er3+/2Yb3+, and Tm3+ doped oxyfluoride aluminosilicate glasses. From the measured absorption spectra, Judd-Ofelt (J-O) intensity parameters (Ω2, Ω4 and Ω6) have been calculated for all the studied ions. Decay lifetime curves were measured for the visible emissions of Er3+ (558 nm, green), and Tm3+ (650 and 795 nm), respectively. The near infrared emission spectrum of Nd3+ doped glass has shown full width at half maximum (FWHM) around 45 nm (for the 4F3/24I9/2 transition), 45 nm (for the 4F3/24I11/2 transition), and 60 nm (for the 4F3/24I13/2 transition), respectively, with 800 nm laser diode (LD) excitation. For Er3+, and Er3+/2Yb3+ co-doped glasses, the characteristic near infrared emission bands were spectrally centered at 1532 and 1544 nm, respectively, with 980 nm laser diode excitation, exhibiting full width at half maximum around 50 and 90 nm for the erbium 4I13/24I15/2 transition. The measured maximum decay times of 4I13/24I15/2 transition (at wavelength 1532 and 1544 nm) are about 5.280 and 5.719 ms for 1Er3+ and 1Er3+/2Yb3+ (mol%) co-doped glasses, respectively. The maximum stimulated emission cross sections for 4I13/24I15/2 transition of Er3+ and Er3+/Yb3+ are 10.81×10−21 and 5.723×10-21 cm2. These glasses with better thermal stability, bright visible emissions and broad near-infrared emissions should have potential applications in broadly tunable laser sources, interesting optical luminescent materials and broadband optical amplification at low-loss telecommunication windows.  相似文献   

12.
A series of new long-lasting phosphor Gd2O2S:xEr,Ti are prepared by the conventional high-temperature solid-state method and their luminescent properties are systematically investigated in this paper. The characteristic afterglow emission of Er, which is due to the transition of 4F9/24I15/2 and 4S3/24I15/2, is reported for the first time. XRD, photoluminescence, long-lasting phosphorescence and decay curves are used to characterize the synthesized phosphors. The possible energy transfer mechanism of Gd2O2S:xEr,Ti is also investigated.  相似文献   

13.
Efficient upconversion (UC) luminescence is demonstrated in Er3+:Sr2CeO4 powders prepared by combustion synthesis and exposed to near-infrared (∼975 nm) radiation. The UC emission lines observed at ∼530, ∼550 and ∼665 nm correspond, respectively, to 2H11/24I15/2, 4S3/24I15/2 and 4F9/24I15/2 4f-4f transitions of Er3+. X-ray powder diffraction data showed that the SrCO3 phase (impurity) is dramatically reduced when Sr2+ is partially substituted by Mg2+ ions. The UC phenomenon was investigated by use of continuous wave and pulsed laser excitation and the UC mechanism was attributed to energy transfer between excited Er3+ ions.  相似文献   

14.
Ultraviolet (UV) upconversion (UC) luminescence in Yb3+/Er3+-codoped yttrium oxide (Y2O3) nanocrystals can be enhanced by orders of magnitude via tridoping further with Li+ ions under diode laser excitation of 970 nm. Sensitized three-photon UC radiations at 390 and 409 nm, corresponding to the 4G11/24I15/2 and 4H9/24I15/2 of Er3+ ions, respectively, present an enhancement time of about 33 times, which is larger than the 24 times enhancement for the UC green radiation. The UV UC radiation at 320 nm that corresponds to the 2P3/24I15/2 of Er3+ ions has also been greatly enhanced. Theoretical calculations interpret that all the observed enhancement times of UV UC radiations arise from the prolonged lifetimes of their intermediate states.  相似文献   

15.
The emission spectra and the lifetime of the lasing transition 4I13/24I15/2 in Er3+-doped TeO2-ZnO binary glass have been studied. The investigation includes Raman scattering spectroscopy as well as optical absorption, luminescence, and lifetime measurements techniques. The influence of erbium concentration on the line-shape of this electron transition has been analyzed. It was observed that the increasing of Er3+ ion concentration, in the 0.2-4 mol% range, results in a structural changes and a significant spectral broadening of the 1.53 μm emission band. Reabsorption has been evoked to explain the broadening of the 4I13/24I15/2 emission line. In the paper, is also reported the effect of the erbium content on the emission intensity of the 4I13/24I15/2 transition as well as on the lifetime of the 4I13/2 level. Based on the electrical-dipole interaction theory, the luminescence concentration quenching mechanism by hydroxyl groups is analyzed. The data suggest that <10% of hydroxyl groups are coupled to erbium ions in the zinc tellurite glass network.  相似文献   

16.
Er3+-doped oxyfluoride germanate glasses have been synthesized by the conventional melting and quenching method. The Judd-Ofelt intensity parameters were calculated based on the Judd-Ofelt theory and absorption spectra measurements. With the substitution of PbF2 for PbO, the Ω2 parameter decreases, while the Ω6 parameter increases. These change trends indicate that fluoride anions come to coordinate erbium cations and the covalency of the Er-O bond decreases. Structural and thermal stability properties were obtained by Raman spectra and differential thermal analysis, indicating that PbF2 plays an important role in the formation of glass network and has an important influence on the maximum phonon energy and thermal stability of host glasses. Intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions 2H11/24I15/2, 4S3/24I15/2, and 4F9/24I15/2, respectively, were simultaneously observed at room temperature. With increasing PbF2 content, the intensity of red (657 nm) emissions increases significantly, while that of the green (525 and 546 nm) emission increases slightly. The results indicate that PbF2 has more influence on the red (657 nm) emission than the green (525 and 546 nm) emissions in oxyfluoride germanate glasses. The possible upconversion luminescence mechanisms have also been estimated and discussed.  相似文献   

17.
CaTiO3:Er3+ (5%) nanocrystals were obtained by sol–gel method under acidic conditions. The sizes of nanocrystals were 40 nm. Strong green anti-Stokes emission was observed after excitation of the 4I9/2 and 4I11/2 level. The emission is due to excited state absorption (ESA) and energy transfer upconversion (ETU).  相似文献   

18.
This paper reports on the near infrared (730-783 nm) to the visible upconversion emissions at 482 nm (4F9/26H15/2), 576 nm (4F9/26H13/2) and 662 nm (4F9/26H11/2) from the Dy3+doped 53ZrF4-20BaF2-2LaF3-2YF3-3AlF3-19NaF-1DyF3 glasses. We have also carried out a systematic study on the normal emission properties of these glasses in order to understand their performance both as a NIR upconverted visible luminescent and as normal visible fluorescent optical systems of technical importance. With an increase in Dy3+ concentration beyond a particular value (1 mol%), activator-activator interaction becomes a significant cause of concentration quenching in the luminescence properties. The dependence of the emission spectra on the excitation wavelengths has also been examined and 451 nm was found to be the ideal excitation wavelength in the measurement of normal fluorescence spectra. In the case of NIR upconverted visible emission, we have observed that the NIR excitation at 783 nm as the suitable pump wavelength in demonstrating prominent visible emission colours from these glasses. The relevance in undertaking these optical materials lies in their potential for upconversion laser application in the visible wavelength region. The NIR upconversion phenomenon has been explained in terms of energy level schemes due to excited state absorption (ESA) and energy transfer upconversion (ETU) processes.  相似文献   

19.
Ultraviolet upconversion emissions at 262, 276, 308 and 320 nm were observed from Er3+-doped Y2O3 with a 532 nm continuous wave compact solid-state laser excitation. Power-dependence analysis demonstrates that two-photon upconversion process populates the 4D5/2, 2H9/2 and 2P3/2 states. The energy transfer upconversion (ETU) plays an important role in populating 4D5/2 and 2P3/2 states. It appears that 2P3/2 state population originates from ETU 2H11/2+2H11/24I13/2+2P3/2, moreover, a subsequent excited state absorption (ESA) from the 4I9/2 level.  相似文献   

20.
The B2O3 component was introduced into Er3+/Ce3+ co-doped TeO2-ZnO-Na2O-Nb2O5 glass to improve energy transfer rate of Er3+:4I11/2→Ce3+:2F5/2 phonon-assisted cross-relaxation process. With the 6 mol% substitution of B2O3 for TeO2, the energy transfer rate increased from 1300 to 1831 s−1 and the fluorescence intensity increased by about 13.4%. However, the more B2O3 substitution in the same glass system reduced the quantum efficiency of Er3+:4I13/24I15/2 transition due to the higher OH group concentration. The results show that an appropriate amount of B2O3 component can be used to improve the phonon-assisted energy transfer rate and enhance 1.53 μm fluorescence emission by increasing the phonon energy of host glass. The effect of B2O3 on the energy transfer process, the lifetimes of the 4I11/2 and 4I13/2 levels, and the upconversion emission have also been investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号