首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A scheme is proposed to achieve the two-mode entanglement in an asymmetric semiconductor three-coupled-quantum-well (TCQW) system based on the intersubband transitions (ISBTs). In the present scheme, the TCQW structure is trapped into a doubly resonant cavity, and the required quantum coherence effects is induced by the corresponding ISBTs, which is the key of realising entanglement. By numerically simulating the dynamics of the system, we show that the entangled cavity modes with the far-infrared wavelengh can be realised in this TCQW system. The present research provides an efficient approach to achieve far-infrared entangled light in the semiconductor nanostructures, which may have significant impact on the progress of solid-state quantum information theory.  相似文献   

2.
We propose a new scheme to achieve fully three-mode entanglement based on the standard criteria [P. van Loock and A. Furusawa, Phys. Rev. A 67, 052315 (2003)] in a four-level atomic system driven by two strong classical fields. Via numerically simulating the dynamics of the system, we investigate the generation and evolution of entanglement. Based on our scheme, it is demonstrated that the three-mode continuous-variable (CV) entanglement can be achieved under different initial conditions and the entangled period will be extended by enhancing the intensity of the classical field. Moreover, our numerical results also show that the present system can be considered as a three-mode entanglement amplifier.  相似文献   

3.
宗晓岚  杨名 《物理学报》2016,65(8):80303-080303
量子纠缠是量子信息的重要物理资源. 然而当量子系统与环境相互作用时, 会不可避免地产生消相干导致纠缠下降, 因此保护纠缠不受环境的影响具有重要意义. 振幅衰减是一种典型的衰减机制. 如果探测环境保证没有激发从系统中流出, 即视为对系统的一种弱测量. 本文基于局域脉冲序列和弱测量, 提出了一种可以保护多粒子纠缠不受振幅衰减影响的有效物理方案, 保护的对象是在量子通信和量子计算中发挥重要作用的Cluster态和Maximal slice态.  相似文献   

4.
We present a scheme for controlled remote implementation of an arbitrary single-qubit operation by using partially entangled states as the quantum channel. The sender can remote implement an arbitrary single-qubit operation on the remote receiver’s quantum system via partially entangled states under the controller’s control. The success probability for controlled remote implementation of quantum operation can achieve 1 if the sender and the controller perform proper projective measurements on their entangled particles. Moreover, we also discuss the scheme for remote sharing the partially unknown operations via partially entangled quantum channel. It is shown that the quantum entanglement cost and classical communication can be reduced if the implemented operation belongs to the restrict sets.  相似文献   

5.
远程制备双原子纠缠态   总被引:1,自引:1,他引:0  
陈美锋  马宋设 《光子学报》2008,37(1):188-191
提出一种远程制备双原子纠缠态的方案,该方案基于两个原子与单模腔场的同时非共振相互作用.由于双粒子纠缠态比三粒子纠缠态容易制备,方案用两对双原子纠缠态作为量子通道.Alice 拥有的两个相同原子同时与一单模腔场非共振相互作用.Alice已知她要制备的纠缠态,她选择适当的相互作用时间、测量她所拥有的两个原子并通过经典通道通知Bob.Bob引入一个相同的辅助原子和一个单模腔场来实现方案.方案对腔场状态和腔损耗不敏感,基于当前的腔QED 技术,方案能在实验上实现.该方案有望在量子信息过程中有重要的应用价值.  相似文献   

6.
The idea that quantum randomness can be reduced to randomness of classical fields (fluctuating at time and space scales which are essentially finer than scales approachable in modern quantum experiments) is rather old. Various models have been proposed, e.g., stochastic electrodynamics or the semiclassical model. Recently a new model, so called prequantum classical statistical field theory (PCSFT), was developed. By this model a “quantum system” is just a label for (so to say “prequantum”) classical random field. Quantum averages can be represented as classical field averages. Correlations between observables on subsystems of a composite system can be as well represented as classical correlations. In particular, it can be done for entangled systems. Creation of such classical field representation demystifies quantum entanglement. In this paper we show that quantum dynamics (given by Schrödinger’s equation) of entangled systems can be represented as the stochastic dynamics of classical random fields. The “effect of entanglement” is produced by classical correlations which were present at the initial moment of time, cf. views of Albert Einstein.  相似文献   

7.
We proposed a scheme for generating fully three-mode continuous-variable (CV) entanglement between three nondegenerate cavity modes in a single-atom laser. In our scheme, the single-atom laser consists of a four-level atom inside a triply resonant cavity, and the atomic coherence is induced by two classical laser fields driving the corresponding atomic transitions. To demonstrate the generation of entanglement, we numerically simulated the dynamics of this system, and the numerical simulation shows that the single-atom laser considered here can be seen as a three-mode CV entanglement amplifier even in the presence of cavity losses. Moreover, we also show that the generation of entanglement doesn’t depend intensively on the initial condition of cavity field, and the fully three-mode CV entanglement can be realized no matter the three entangled (nondegenerate) modes are initially in the same state or different states based on our scheme.  相似文献   

8.
A scheme for probabilistic teleportation of an unknown three-atom entangled state via a five-atom non-maximally entangled cluster state as quantum channel is proposed. In this scheme, the sender performs two Bell state and a single-atom measurements on the atoms, the receiver can reconstruct the original state with a certain probability by introducing an auxiliary atom and operating appropriate unitary transformations and controlled-not (C-not) operations according to the sender Alice's measurement results. As a result, the probability of successful teleportation is determined by the smallest two of the coefficients'absolute values of the cluster state. The considerable advantage of our scheme is that we employ a non-maximally entangled cluster state as quantum channel in the scheme, which can greatly reduce the amount of entanglement resources and need less classical bits. If we employ a maximally entangled cluster state as quantum channel, the probabilistic teleportation scheme becomes usual teleportation, the successful probability being 100%.  相似文献   

9.
A scheme is proposed to simulate the Ising model and preserve the maximum entangled states (Bell states) in cavity quantum electrodynamics (QED) driven by a classical field with large detuning. In the strong driving and large-detuning regime, the effective Hamiltonian of the system is the same as the standard Ising model, and the scheme can also make the initial four Bell states of two atoms at the maximum entanglement all the time. So it is a simple memory for the maximal entangled states. The system is insensitive to the cavity decay and the thermal field and more immune to decoherence. These advantages can warrant the experimental feasibility of the current scheme. Furthermore, the genuine four-atom entanglement may be acquired via two Bell states through one-step implementation on four two-level atoms in the strong-driven model, and when two Greenberger-Horne-Zeilinger (GHZ) states are prepared in our scheme, the entangled cluster state may be acquired easily. The success probability for the scheme is 1. Supported by the National Natural Science Foundation of China (Grant No. 10774088) and the Key Program of the National Natural Science Foundation of China (Grant No. 10534030)  相似文献   

10.
潘长宁  方卯发 《中国物理》2007,16(5):1225-1228
We propose an effective scheme for the entanglement concentration of a four-particle state via entanglement swapping in an ion trap. Taking the maximally entangled state after concentration as a quantum channel, we can faithfully and determinatively teleport quantum entangled states from Alice to Bob without the joint Bell-state measurement. In the process of constructing the quantum channel, we adopt entanglement swapping to avoid the decrease of entanglement during the distribution of particles. Thus our scheme provides a new prospect for quantum teleportation over a longer distance. Furthermore, the success probability of our scheme is 1.0.  相似文献   

11.
A scheme for probabilistic teleportation of an unknown three-qubit entangled state via a five-qubit non-maximally entangled cluster state as quantum channel is proposed. In this scheme, the sender performs two Bell state and a single-qubit measurements on the qubits, the receiver can reconstruct the original state with a certain probability by making appropriate unitary transformations and controlled-not (C-not) operations. As a result, the probability of successful teleportation is determined by the smallest two of the coefficients’ absolute values of the cluster state. The considerable advantage of our scheme is that we employ a non-maximally entangled cluster state as quantum channel in the scheme, which can greatly reduce the amount of entanglement resources and need less classical bits.  相似文献   

12.
We present an effective scheme to teleport an unknown ionic entangled internal state via trapped ions without joint Bell-state measurement. In the constructed quantum channel process, we adopt entanglement swapping to avoid decrease of entanglement during the distribution of particles. Thus our scheme provides new prospects for quantum teleportation over longer distance. The distinct advantages of our scheme are that our scheme is insensitive to heating of vibrational mode and can be generalized to teleport an N-ion electronic entangled GHZ class state. Furthermore, in our scheme the success probability can reach 1.  相似文献   

13.
王湘林  吴德伟  李响  朱浩男  陈坤  方冠 《物理学报》2017,66(23):230302-230302
介绍了路径纠缠微波及其生成原理,将生成信号以量子力学算符的形式表示,并在光子数态表象下展开,定性地给出了生成信号与压缩参量之间的关系.提出了一种路径纠缠微波信号质量评价方法,即通过信号中纠缠微波光子总数的期望值表征信号的纠缠度,间接实现对信号质量的评价.基于这种信号质量评价方法,提出了一种生成质量最优路径纠缠微波信号的压缩参量选取方法:在近似确定有效纠缠微波光子数的前提下,找出生成不同微波光子数纠缠概率最大时的一组压缩参量值,进而得出各个压缩参量值所对应的一组纠缠微波光子总数的期望值,其中的最大值对应的压缩参量值即为生成质量最优信号所要选择的压缩参量值.通过理论分析,发现路径纠缠微波信号质量由压缩参量决定,且只与压缩幅有关,而与压缩角无关.仿真实验结果表明,在纠缠微波光子数的最大有效值取为"26"时,纠缠微波光子总数期望值的最大值对应的压缩幅值为1.77,即压缩幅取此值时所得到的路径纠缠微波信号质量最佳,仿真结果表明该方法是有效的.本文的研究为路径纠缠微波在实验研究和实际应用中如何生成高质量信号的问题提供了思路.  相似文献   

14.
利用两能级原子与腔场的相互作用转移纠缠   总被引:2,自引:2,他引:0  
分析了大失谐情况下一个两能级原子和相干态腔场相互作用的特点;讨论了利用两能级原子和相干态腔场相互作用制备纠缠相干态的方法;提出了一个关于纠缠相干态的纠缠转移的方案。在这个纠缠转移的方案里,通讯伙伴之间使用的量子信道是由两个振幅相同位相相反的相干态构成的纠缠态。通过使用两能级原子和腔肠相干态的相互作用和两模正交态测量并在经典信息的帮助下完成了三个通讯伙伴之间的纠缠转移。随着近来腔量子电动力学技术的发展,这个方案是能够被实行的。  相似文献   

15.
Many quantum communication schemes rely on the resource of entanglement. For example, quantum teleportation is the transfer of arbitrary quantum states through a classical communication channel using shared entanglement. Entanglement, however, is in general not easy to produce on demand. The bottom line of this work is that a particular kind of entanglement, namely that based on continuous quantum variables, can be created relatively easily. Only squeezers and beam splitters are required to entangle arbitrarily many electromagnetic modes. Similarly, other relevant operations in quantum communication protocols become feasible in the continuous‐variable setting. For instance, measurements in the maximally entangled basis of arbitrarily many modes can be accomplished via linear optics and efficient homodyne detections. In the first two chapters, some basics of quantum optics and quantum information theory are presented. These results are then needed in Chapter III, where we characterize continuous‐variable entanglement and show how to make it. The members of a family of multi‐mode states are found to be truly multi‐party entangled with respect to all their modes. These states also violate multi‐party inequalities imposed by local realism, as we demonstrate for some members of the family. Further, we discuss how to measure and verify multi‐party continuous‐variable entanglement. Various quantum communication protocols based on the continuous‐variable entangled states are discussed and developed in Chapter IV. These include the teleportation of entanglement (entanglement swapping) as a test for genuine quantum teleportation. It is shown how to optimize the performance of continuous‐variable entanglement swapping. We highlight the similarities and differences between continuous‐variable entanglement swapping and entanglement swapping with discrete variables. Chapter IV also contains a few remarks on quantum dense coding, quantum error correction, and entanglement distillation with continuous variables, and in addition a review of quantum cryptographic schemes based on continuous variables. Finally, in Chapter V, we consider a multi‐party generalization of quantum teleportation. This so‐called telecloning means that arbitrary quantum states are transferred not only to a single receiver, but to several. However, due to the quantum mechanical no‐cloning theorem, arbitrary quantum states cannot be perfectly copied. We present a protocol that enables telecloning of arbitrary coherent states with the optimal quality allowed by quantum theory. The entangled states needed in this scheme are again producible with squeezed light and beam splitters. Although the telecloning scheme may also be used for "local'' cloning of coherent states, we show that cloning coherent states locally can be achieved in an optimal fashion without entanglement. It only requires a phase‐insensitive amplifier and beam splitters.  相似文献   

16.
We propose a new scheme to achieve the tripartite entanglement based on the standard criteria [Phys. Rev. A 67(2003) 052315] in a inverse-tripod atomic system. In our scheme, the atomic coherence is introduced by two microwave fields which drive the upper three levels of atom. By numerically simulating the dynamics of system, we investigate the generation and evolution of entanglement in the presence of atom and cavity decay. As a result, the present research provides an efficient approach to achieve fully tripartite entanglement with different frequencies and initial states for each entangled mode, which may have impact on the progress of multicolored multi-notes quantum information networks.  相似文献   

17.
Quantum networks enable many applications beyond the reach of classical networks by supporting the establishment of long-distance entanglement connections, and are already stepped into the entanglement distribution network stage. The entanglement routing with active wavelength multiplexing schemes is urgently required for satisfying the dynamic connection demands of paired users in large-scale quantum networks. In this article, the entanglement distribution network is modeled into a directed graph, where the internal connection loss among all ports within a node is considered for each supported wavelength channel, which is quite different to classical network graphs. Afterwards, we propose a novel first request first service (FRFS) entanglement routing scheme, which performs the modified Dijkstra algorithm to find out the lowest loss path from the entangled photon source to each paired user in order. Evaluation results show that the proposed FRFS entanglement routing scheme can be applied to large-scale and dynamic topology quantum networks.  相似文献   

18.
A symmetric two-mode Gaussian entangled state is used to investigate the effect of excess noise on entanglement sudden death and Gaussian quantum discord with continuous variables. The results show that the excess noise in the channel can lead to entanglement sudden death of a symmetric two-mode Gaussian entangled state, while Gaussian quantum discord never vanishes. As a practical application, the security of a quantum key distribution (QKD) scheme based on a symmetric two-mode Gaussian entangled state against collective Gaussian attacks is analyzed. The calculation results show that the secret key cannot be distilled when entanglement vanishes and only quantum discord exists in such a QKD scheme.  相似文献   

19.
六光子量子纠缠态的制备   总被引:2,自引:0,他引:2       下载免费PDF全文
游珺  李家华  谢小涛 《中国物理》2005,14(7):1329-1333
我们提出了一个完全基于量子擦除概念上的六光子纠缠态的制备方案。首先,提出了利用一组四纠缠光子来制备六光子纠缠态的方案。接着,运用同样的技术,通过五粒子纠缠和Bell态的相互作用来制备六光子纠缠态。我们的实验方案可以应用于以测量为基础的量子计算和多体量子通信领域的研究。我们发现该方案成功的概率取决于纠缠态的系数。  相似文献   

20.
We consider a SQUID ring inductively coupled to an electromagnetic field mode, both treated quantum mechanically. We demonstrate a method for creating a maximally entangled state between the ring and the field mode. Our method utilises a non-adiabatic external magnetic flux pulse to move into and out of a transition region. Hence, our approach is fundamentally different to techniques based on Landau–Zener tunnelling that can also be used to achieve similar results. Our analysis is extended to include the effects of coupling the system to a dissipative environment. With this model we show that although such an environment makes a noticeable difference to the time evolution of the system, it need not destroy the entanglement of this coupled system over time scales required for quantum technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号