首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We propose a simple dual-wavelength Er-doped fiber laser configuration based on a dual-wavelength fiber Bragg grating written on the splice joint between two different fibers for wavelength-selective filter in the Sagnac loop interferometer. The wavelength separation between the adjacent lasing wavelengths is 1.12 nm and the side-mode suppression ratio (SMSR) is over 55 dB. The output power variation is less than 0.8 dB over a two-minute period. Moreover, the lasing wavelength can be effectively tuned using the thermal heating method.  相似文献   

2.
Based on the photoinduced birefringence in azo materials, the model of the birefringent long period fiber gratings (BLPFGs) has been proposed and the transmission of such birefringent fiber gratings was further simulated by the coupled mode theory. In order to obtain the optimum condition for making birefringent azopolymer optical fiber (APOF) gratings the photoinduced birefringence of azo dye and methyl methacrylate (MMA) copolymers was systematically studied. After photosensitivity study of azo samples, using Teflon technique, azo dye containing single mode polymer optical fiber (POF) was fabricated. Finally, BLPFGs can be fabricated in azopolymer fiber using polarized 532 nm laser. A 120 μm LPFG with a 50% duty cycle has been successfully written within the core of the fiber with 532 nm laser by an amplitude mask method. Under polarized microphotography, the grating was observed when the optical axis was set at 45° with the direction of the first polarizing lens of the polarization microscope.  相似文献   

3.
We report the experimental demonstration of a reconfigurable multiwavelength fiber laser source with switchable wavelength channels and tunable wavelength spacing by spectrum slicing a broadband light source using a tunable comb filter. The tunable comb filter is based on a thermally-induced linearly-chirped fiber Bragg grating (LCFBG). As an example to demonstrate the effectiveness of the method, two wavelength channels with various wavelength spacings and eight wavelength channels with ∼1.6 nm wavelength spacing were experimentally demonstrated. All the wavelength channels have rejection ratios of greater than 20 dB, and very small 3-dB linewidths of ∼10 pm. The multiwavelength optical source has such unique advantages as simple all-fiber structure, switchable wavelength channels, tunable wavelength spacing, very narrow linewidths, and stable room-temperature operation.  相似文献   

4.
A stable, incorporate and switchable dual-wavelength fiber laser with two fiber Bragg gratings written in a photosensitive and polarization-maintaining erbium-doped fiber directly, that is, without splices in the laser cavity, is proposed and demonstrated. Simultaneous dual-wavelength oscillation is achieved at room temperature with a wavelength spacing of 0.343 nm. The power fluctuation and wavelength shift of single-wavelength oscillations are measured to be less than 0.24 dB and 0.013 nm over 2 h. The wavelength switchability between single- and dual-wavelength oscillations is realized by altering the voltage upon the electrostrictive ceramic actuator.  相似文献   

5.
In this paper, we propose an ultra narrow band fiber grating filter which is composed of two optical circulators and two fiber Bragg gratings (FBG). Through numerical simulation and experiment investigation, a narrow-band output spectrum with 1064 nm center wavelength and 0.017 nm bandwidth is obtained. It may find a certain application in the fields of free space optic communication, laser tuning and so on as we believe.  相似文献   

6.
This paper reports on a high-repetition-rate dual signal-wave (DSW) optical parametric oscillator (OPO) operating at the 1.5 μm band with tunable wavelength intervals from 2.5 nm to 69.1 nm. Two periodically poled crystals, a periodically poled lithium niobate (PPLN) with multiple gratings and a single grating MgO-doped PPLN (PPMgOLN), are cascaded in the same OPO cavity to generate dual signal-waves by using quasi-phase-matched (QPM) technique. The pump source was a Q-switched diode-pumped Nd:YVO4 laser operating at 50 kHz. At an incident pump power of 3 W, an average output power of 169.6 mW at 1489.2 nm and 1558.3 nm has been achieved.  相似文献   

7.
The wavelength-tunable and switchable narrow bandwidth mode-locking operation is demonstrated in an all fiber laser based on semiconductor-saturable absorber mirror(SESAM).Two narrow-band fiber Bragg gratings centered at 1029.9 nm and 1032 nm respectively with a polarization controller inserted between them are used to realize the wavelength switchable between 1029.9nm and 1032 nm.The laser delivers different pulse widths of 7.5ps for 1030 nm and 20 ps for 1032 nm.The maximum output power for both could reach ~6.5mW at single pulse operation.The output wavelength could be tuned to about 0.9nm intervals ranging from 1030.2nm to 1031.1 nm and from 1032.15 nm to 1033.7nm with the temperature change of the fiber Bragg grating,respectively.  相似文献   

8.
A single-mode fiber laser based on an intracavity core-cladding mode conversion is demonstrated. The fiber laser consists of an Er-doped active fiber and two fiber Bragg gratings. One Bragg grating is a core-cladding mode converter, and the other Bragg grating is a narrowband high reflector that selects the lasing wavelength. Coupling a single core mode and a single cladding mode by the grating mode converter, the laser operates as a hybrid single-mode laser. This approach for designing a laser cavity provides a much larger mode area than conventional large-mode-area step-index fibers.  相似文献   

9.
A novel multi-wavelength erbium-doped fiber laser operating in C-band is proposed and successfully demonstrated. The wavelength interval between the wavelengths is about 0.22 nm. The 3 dB bandwidth of the laser is about 0.012 nm, and the output power reaches 4.8 mW. By using a high birefringence fiber ring mirror (HiBi-FLM) and a tunable FBG, the laser realizes switchable and tunable characteristic. The mode hopping can be effectively prevented. Moreover, this laser can improve wavelength stability significantly by taking advantage of an un-pumped Er3+-doped fiber at the standing-wave section. The laser can operate in stable narrow-line-width with single-, dual-wavelength, and unstable triple-wavelength output at room temperature.  相似文献   

10.
We propose and demonstrate a new concept of stable narrow-line-width and close wavelength spacing dualwavelength lasing in an Er-doped fibre ring laser (EDFRL) by cleaving the spectrum with a wavelength-selective component in the EDFRL. A fibre loop mirror (FLM) combining with a polarization controller (PC) acts as the cleaver. The cleaver can produce a fine pectinate spectrum. By adjusting the PC, the fine pectinate spectrum can be so changeable that cleaving the spectrum of a fibre Bragg grating (FBG) into two parts. As a result, we obtain the dual-wavelength fibre lasering with a bandwidth of only 0.03nm and a wavelength spacing of only 0.07nm. Furthermore, the laser can also perform stable switchable single wavelength or stable different-bandwidth dual-wavelength by carefully adjusting the PC at room temperature.  相似文献   

11.
A simple and wavelength-switchable fiber laser consisting mainly of an Erbium-doped fiber amplifier (EDFA) which provides the optical gain and an 1 × 40 (1 input channel to 40 output channels) arrayed waveguide grating (AWG) that supports wavelength selection is reported. The lasering behavior in wavelength-switchable fiber laser is investigated experimentally. One can obtain wavelength-switchable single-longitudinal-mode (SLM) single wavelength laser with different wavelength by changing different channel of the AWG as the wavelength selection element. Lasering wavelength hopping in dual wavelength laser operation for low pump power is experimentally observed. The wavelength hopping and the output power of the laser is controlled by using a variable optical attenuator (VOA). The wavelength hopping operation is eliminated for high pump power. One can obtain switchable dual wavelength laser with different wavelength by selecting different two channels of the AWG. The output laser exhibits a good performance having a high sidemode suppression ratio (SMSR), narrow line-width and symmetrical spectrum.  相似文献   

12.
A switchable erbium-doped fiber-ring laser providing dual-wavelength outputs with orthogonal polarizations when operating at room temperature is proposed. One polarization-maintaining fiber Bragg grating (PMFBG) in a Sagnac loop interferometer is used as the wavelength-selective filter. Due to the enhancement of the polarization hole burning (PHB) by the PMFBG, the laser can be designed to operate in stable dual-wavelength or wavelength-switching modes with a wavelength spacing of 0.336 nm at room temperature by adjusting a polarization controller (PC). The optical signal-to-noise ratio (OSNR) is over 42 dB. The amplitude variation over 90 min is less than 0.6 dB for both wavelengths.  相似文献   

13.
Electrical wavelength switching of picosecond pulses was demonstrated in an actively mode-locked Er-doped fiber ring laser with fiber gratings by changing the electrical driving frequency of the modulator. Laser pulses switchable between two wavelengths spaced from 0.5 to 18 nm apart were achieved. The switching speed between the two wavelengths was of the order of several hundred kilohertz.  相似文献   

14.
We report effective formation of population gratings in ytterbium-doped fibers by coherent light at 976 nm, i.e. at the wavelength that is typically utilized for optical pumping of these fibers. The dynamic gratings need sub-mW cw laser power to be recorded and have comparable amplitude (absorption) and phase (refractive index) components. Given the spontaneous relaxation time of a Yb3+ meta-stable level of ~ 0.8 ms, the grating formation time proved also to be in the sub-ms region with the phase grating component significantly slower than the amplitude one.  相似文献   

15.
Han YG  Tran TV  Lee SB 《Optics letters》2006,31(6):697-699
We experimentally demonstrate a wavelength-spacing tunable multiwavelength erbium-doped fiber laser based on degenerate four-wave mixing in a dispersion-shifted fiber incorporating multiple-fiber Bragg gratings. We have achieved stable operation of the multiwavelength erbium-doped fiber laser, which has 0.8 nm spacing ten-channel lasing wavelengths and a high extinction ratio of more than approximately 45 dB, at room temperature. The output power of the multiwavelength erbium-doped fiber laser is stable, so the peak fluctuation is less than approximately 0.2 dB. By changing the properties such as loss and polarization state of multiple fiber Bragg grating cavities, we can exercise flexible control of the wavelength spacing of the multiwavelength output. We can also obtain switchable multiwavelength lasing operation by elimination of the effects of alternate single-fiber Bragg gratings.  相似文献   

16.
A theoretical analysis of nano-deep corrugated long-period waveguide gratings on a SU-8 polymer-based channel waveguide with NOA61 optical epoxy coated upper- and lower cladding is presented. The transmission spectra of the gratings show strong rejection bands both at visible (at wavelength region of 450?460 nm) and infra-red (at wavelength region of 1530?1540 nm) regions when a grating period of ?68 μm with optimized grating tooth height is considered. Phase-matching graphs are studied to find the relationship between resonance wavelength and grating period. These results show that the grating parameters significantly affect the characteristics of transmission spectra as well as the resonance wavelength of the grating. Long-period waveguide grating-based band pass filter made by use of same polymer materials are also designed and analyzed. These types of waveguide grating-based filters can widely be used for visible and infra-red wavelength sensing applications.  相似文献   

17.
A deep ultraviolet femtosecond laser operating at wavelength 258 nm was demonstrated to be effective in trimming fiber Bragg gratings in telecommunication fibers. A smooth tunable resonance wavelength shift of up to 0.52 nm has been observed, corresponding to a refractive index change of ∼5 × 10−4 after an accumulated laser fluence of 63.3 kJ/cm2 at a single pulse fluence of 124 mJ/cm2. The ultrafast laser enhancement of ultraviolet photosensitivity response and modification of anisotropic index profile in silica fiber is a powerful technique to precise control of the performance of fiber Bragg grating devices for applications in optical filtering and polarization mode dispersion management.  相似文献   

18.
We demonstrate a continuously wavelength-spacing-tunable and high-power multiwavelength fiber optical parametric oscillator based on the multiwavelength idler-output technique. The laser cavity for multiwavelength idler outputs is constructed by a pumped highly-nonlinear dispersion-shifted fiber as parametric gain medium, two highly-reflective chirped fiber Bragg gratings (CFBGs) and a superimposed CFBG as comb-like filter. At a pump power of 1.1 W, the idler output of 10 wavelengths around 1.56 μm is achieved with a wavelength spacing of 0.39 nm. The wavelength spacing can be continuously tuned from 0.39 to 1.0 nm by utilizing a cantilever beam-based chirp tuning method to change the FSR of the superimposed CFBG. Our experimental results show that the designed multiwavelength idler-output scheme can significantly increase the multiwavelength output power with a total output power of 98 mW and each idler-channel power of 16.3 mW.  相似文献   

19.
A stable and narrow wavelength spacing multiwavelength erbium-doped fiber laser is proposed and demonstrated. The laser can produce simultaneous dual- and triple-wavelength lasing oscillations with a narrow wavelength spacing of less than 0.1 nm via using a single fiber Bragg gratings written in polarization-maintaining (PM) fiber. By adjusting polarization controller, the wavelength spacing of dual-wavelength lasing oscillations can be tuned to as small as 0.032 nm. The maximum amplitude variation for every lasing wavelength is less than 0.5 dB. The room-temperature operation principle is based on the polarization hole burning and deeply saturated effect in an ordinary erbium-doped fiber ring laser (EDFRL). The laser has the advantages of simple all-fiber configuration, low cost, high stability and operating at room temperature.  相似文献   

20.
We experimentally demonstrate a fiber ring laser for high-resolution torsion measurement, where the laser cavity consists of a Mach-Zehnder interferometer formed with a pair of long-period fiber gratings written in a twisted single-mode fiber by a CO2 laser. The emitting wavelength of the laser provides a measure of the rate of the torsion applied to the grating pair, while the direction of the wavelength shift indicates the sense of the applied torsion. The narrow linewidth and the large side-mode suppression ratio of the laser can provide a much more precise measurement of torsion, compared with passive fiber-optic torsion sensors. The torsion sensitivity achieved is 0.084 nm/(rad/m) in the torsion range ± 100 rad/m, which corresponds to a torsion resolution of 0.12 rad/m, assuming a wavelength resolution of 10 pm for a typical optical spectrum analyzer. The ultimate resolution of the sensor is limited by the linewidth of the laser and could be an order of magnitude higher.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号