首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, Shi et al. proposed a multiparty quantum secret sharing (QSS) using Bell states and Bell measurements. This study shows that their scheme has a pitfall that could be mounted to a collusion attack if precaution has not been taken in implementation. That is, two dishonest agents can collude to reveal the secret without the help of the others. A possible solution is also presented to avoid the attack.  相似文献   

2.
The security of multiparty quantum secret sharing with Bell states and Bell measurements [R.H. Shi et al., Opt. Commun. 283 (2010) 2476] is analyzed. It is shown that the first agent and the last one can gain access to the dealer's secret if they collaborate in this protocol. Therefore, this protocol does not satisfy the security requirement of quantum secret sharing.  相似文献   

3.
Two multiparty simultaneous quantum identity authentication (MSQIA) protocols based on secret sharing are presented. All the users can be authenticated by a trusted third party (TTP) simultaneously. In the first protocol, the TTP shares a random key K with all the users using quantum secret sharing. The ith share acts as the authentication key of the ith user. When it is necessary to perform MSQIA, the TTP generates a random number R secretly and sends a sequence of single photons encoded with K and R to all the users. According to his share, each user performs the corresponding unitary operations on the single photon sequence sequentially. At last, the TTP can judge whether the impersonator exists. The second protocol is a modified version with a circular structure. The two protocols can be efficiently used for MSQIA in a network. They are feasible with current technology. Supported by the National Basic Research Program of China (973 Program) (Grant No. 2007CB311100), the National High Technology Research and Development Program of China (Grant Nos. 2006AA01Z419 and 20060101Z4015), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 90604023), the Scientific Research Common Program of Beijing Municipal Commission of Education (Grant No. KM200810005004), the Scientific Research Foundation for the Youth of Beijing University of Technology (Grant No. 97007016200701), the National Research Foundation for the Doctoral Program of Higher Education of China (Grant No. 20040013007), the National Laboratory for Modern Communications Science Foundation of China (Grant No. 9140C1101010601), and the Doctor Scientific Research Activation Foundation of Beijing University of Technology (Grant No. 52007016200702)  相似文献   

4.
A protocol for member expansion in quantum (t,n) threshold secret sharing schemes was proposed. Without a trusted center and modifying the shares of old participants, the protocol needs that t (t is the threshold) old participants cooperate to generate the new share. Compared with the previous secret sharing protocols, the proposed protocol has the advantage of joining new participants agilely.  相似文献   

5.
We present an efficient scheme for sharing an arbitrary two-qubit quantum state with n agents. In this scheme, the sender Alice first prepares an n + 2-particle GHZ state and introduces a Controlled-Not (CNOT) gate operation. Then, she utilizes the n + 2-particle entangled state as the quantum resource. After setting up the quantum channel, she performs one Bell-state measurement and another single-particle measurement, rather than two Bell-state measurements. In addition, except that the designated recover of the quantum secret just keeps two particles, almost all agents only hold one particle in their hands respectively, and thus they only need to perform a single-particle measurement on the respective particle with the basis X. Compared with other schemes based on entanglement swapping, our scheme needs less qubits as the quantum resources and exchanges less classical information, and thus obtains higher communication efficiency.  相似文献   

6.
The security of a multiparty quantum secret sharing protocol [L.F. Han, Y.M. Liu, J. Liu, Z.J. Zhang, Opt. Commun. 281 (2008) 2690] is reexamined. It is shown that any one dishonest participant can obtain all the transmitted secret bits by a special attack, where the controlled-(-iσy) gate is employed to invalidate the role of the random phase shift operation. Furthermore, a possible way to resist this attack is discussed.  相似文献   

7.
梁建武  程资  石金晶  郭迎 《物理学报》2016,65(16):160301-160301
本文基于量子图态的几何结构特征,利用生成矩阵分割法,提出了一种量子秘密共享方案.利用量子图态基本物理性质中的稳定子实现信息转移的模式、秘密信息的可扩展性以及新型的组恢复协议,为安全的秘密共享协议提供了多重保障.更重要的是,方案针对生成矩阵的循环周期问题和因某些元素不存在本原元而不能构造生成矩阵的问题提出了有效的解决方案.在该方案中,利用经典信息与量子信息的对应关系提取经典信息,分发者根据矩阵分割理论获得子秘密集,然后将子秘密通过酉操作编码到量子图态中,并分发给参与者,最后依据该文提出的组恢复协议及图态相关理论得到秘密信息.理论分析表明,该方案具有较好的安全性及信息的可扩展性,适用于量子网络通信中的秘密共享,保护秘密数据并防止泄露.  相似文献   

8.
In this paper, only Bell states are employed and needed to be identified to realize the multiparty secret sharing of quantum information, where the secret is an arbitrary unknown quantum state in a qubit. In our multiparty quantum information secret sharing (QISS) scheme, no subset of all the quantum information receivers is sufficient to reconstruct the unknown state in a qubit but the entire is. The present multiparty QISS scheme is more feasible with present-day technique.  相似文献   

9.
Gan Gao 《Optics Communications》2010,283(14):2997-3000
In the paper [S. Lin, Q.Y. Wen, S.J. Qin, F.C. Zhu, Opt. Commun. 282 (2009) 4455], Lin et al. put forward a quantum secret sharing protocol in which the collective eavesdropping-check is employed. We study the security of this protocol and find that it is insecure. Two dishonest agents may collaborate to eavesdrop (half of) Alice's secret messages without introducing any error.  相似文献   

10.
朱珍超  张玉清  付安民 《中国物理 B》2011,20(4):40306-040306
This paper proposes a protocol for multi-party quantum secret sharing utilizing four non-orthogonal two-particle entangled states following some ideas in the schemes proposed by Liu et al. (2006 Chin. Phys. Lett. 23 3148) and Zhang et al. (2009 Chin. Phys. B 18 2149) respectively. The theoretical efficiency for qubits of the new protocol is improved from 50% to approaching 100%. All the entangled states can be used for generating the private key except those used for the eavesdropping check. The validity of a probable attack called opaque cheat attack to this kind of protocols is considered in the paper for the first time.  相似文献   

11.
We present two robust three-party quantum secret sharing protocols against two kinds of collective noise. Each logical qubit is made up of two physical qubits and is invariant under a collective noise. The two agents encode their message on each logical qubit with two unitary physical operations on two physical qubits. As each logical qubit received by each agent can carry two bits of information and the classical information exchanged is reduced largely, these protocols have a high intrinsic efficiency. Moreover, the boss Alice can read out her agents' information with two Bell-state measurements on each four-qubit system, not four-photon joint measurements.  相似文献   

12.
This paper proposes a circular threshold quantum secret sharing (TQSS) scheme with polarized single photons. A polarized single photon sequence runs circularly among any t or more of n parties and any t or more of n parties can reconstruct the secret key when they collaborate. It shows that entanglement is not necessary for quantum secret sharing. Moreover, the theoretic efficiency is improved to approach 100% as the single photons carrying the secret key are deterministically forwarded among any t or more of n parties, and each photon can carry one bit of information without quantum storage. This protocol is feasible with current technology.  相似文献   

13.
A multiparty quantum secret sharing scheme based on Bell measurement is proposed and analyzed. In this scheme, all agents are not required to prepare entangled states or perform any local unitary operation. The security of the protocol is also analyzed. It is shown that any eavesdropper will introduce errors invariably and be detected if he tries to steal information about Trent’s secret. Moreover, because no classical bit needs to be transmitted except those for detection, the total efficiency of the scheme approaches to 100%.  相似文献   

14.
An efficient quantum secret sharing protocol with orthogonal product states   总被引:1,自引:1,他引:1  
An efficient quantum secret sharing protocol with orthogonal product states in the 33 Hilbert space is presented. The particles in the orthogonal product states form two particle sequences. One sequence is sent to Bob and the other is sent to Charlie after rearranging the particle orders. With the help of Alice, Bob and Charlie make the corresponding local measurement to obtain the information of the or- thogonal product states prepared. This protocol has many distinct features such as great capacity and high efficiency.  相似文献   

15.
A threshold quantum secret sharing (TQSS) scheme between multi-party and multi-party was proposed using a sequence of single photons, which is useful and efficient when the parties of communication are not all present. We described the process of this TQSS scheme and discussed its security. It was shown that entanglement is not necessary for quantum secret sharing. Moreover, the theoretic efficiency was improved to approach 100% as almost all the instances can be used for generating the private key, and each photon can carry one bit of information. This protocol is feasible with the present-day technique. Supported by the National Basic Research Program of China (973 Program)(Grant No. 2007CB311100), the National High-Technology Research and Development Program of China (Grant Nos. 2006AA01Z419 and 2006AA01Z440), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 90604023), the Scientific Research Common Program of Beijing Municipal Commission of Education (Grant No. KM200810005004), the Scientific Research Foundation for the Youth of Beijing University of Technology (Grant No. 97007016200701), the Doctoral Scientific Research Activation Foundation of Beijing University of Technology (Grant No. 52007016200702), the ISN Open Foundation, and the National Laboratory for Modern Communications Science Foundation of China (Grant No. 9140C1101010601)  相似文献   

16.
Lin et al. [Song Lin, Fei Gao, Qiao-yan Wen, Fu-chen Zhu, Opt. Commun. 281 (2008) 4553] pointed out that the multiparty quantum secret sharing protocol [Zhan-jun Zhang, Gan Gao, Xin Wang, Lian-fang Han, Shou-hua Shi, Opt. Commun. 269 (2007) 418] is not secure and proposed an improved three-party quantum secret sharing protocol. In this paper, we study the security of the improved three-party quantum secret sharing protocol and find that it is still not secure. Finally, a further improved three-party quantum secret sharing protocol is proposed.  相似文献   

17.
In the comment, we show that the attack [G. Gao, Opt. Commun. 43 (2010) 902], which claims to be able to eavesdrop all the transmitted secret message of the improved three-party quantum secret sharing protocol [S. Lin, et al., Opt. Commun. 281 (2008) 4553], is invalid in the sense that it introduces 25% error rate.  相似文献   

18.
Jason Lin 《Optics Communications》2011,284(5):1468-1471
Recently, Shi et al. proposed a multiparty quantum secret sharing (QSS) using Bell states and Bell measurements. In their protocol, for sharing two classical bits, all parties have to possess two photons after entanglement swapping. This paper proposes an enhancement of Shi et al.'s protocol. Based on the idea that all parties (except dealer) possess two photons to share two classical bits, the qubit efficiency has further improved by removing the photons the dealer has to hold in Shi et al.'s protocol. Moreover, an insider attack is also prevented in the proposed scheme.  相似文献   

19.
顾斌  李传起  陈玉林 《中国物理 B》2009,18(6):2137-2142
We present a scheme for multiparty quantum remote secret conference (MQRSC) with pure entangled states, not maximally entangled multipartite quantum systems. The conferees first share a private quantum key, a sequence of pure entangled states and then use them to encode and decode the secret messages. The conferees exploit the decoy-photon technique to ensure the security of the transmission of qubits. This MQRSC scheme is more feasible and efficient than others.  相似文献   

20.
A protocol of quantum secret sharing between multiparty and multiparty with four states was presented. It was shown that this protocol can nullify the Trojan horse attack with a multi-photon signal, the fake-signal attack with Einstein-Podolsky-Rosen pairs, the attack with single photons, and the attack with invisible photons. In addition, the upper bounds of the average success probabilities were given for dishonest agent eavesdropping encryption using the fake-signal attack with any two-particle entangled states. Supported by the National Natural Science Foundation of China (Grant No. 10671054), the Key Project of Science and Technology Research of Education Ministry of China (Grant No. 207011) and the Natural Science Foundation of Hebei Province, China (Grant Nos. A2005000140 and 07M006)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号