首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
We demonstrate both numerically and experimentally that the phase-change due to fiber nonlinearities induces a bit-pattern-dependent rotation of the state-of-polarization which translates to uncertainty in the principal states of polarization. This effect severely limits the performance of the first-order PMD post-compensation and suggests the use of in-line compensators. Our simulation shows that fiber nonlinearities cause significant distortion (more than 4-dBm Q-penalty after 600-km transmission at 10 Gbit/s) after first-order PMD compensation. For optical powers as low as 3 dBm/channel in systems where PMD is not uniformly distributed along the transmission link, first-order PMD compensation may be ineffective.  相似文献   

2.
基于光信号偏振度的偏振模色散补偿系统的研究   总被引:5,自引:3,他引:2  
偏振模色散已成为当前发展高速长距离光纤传输系统的主要限制因素。理论上分析了光纤一阶偏振膜色散效应对高速伪随机非归零码/归零码光信号偏振度的影响,并利用数值模拟的方法分析了信号不同输入偏振态以及高阶偏振膜色散效应对非归零码光信号偏振度的影响。最后对利用信号偏振度作为反馈控制信号的自适应偏振膜色散补偿系统的补偿性能进行了分析,大量统计分析结果表明对于10Gbit/s的非归零码光纤传输系统,当传输线路的平均偏振膜色散值小于43ps时,利用极大化输出信号偏振度的偏振膜色散补偿系统对信号眼图的补偿概率可以达到99.99%.  相似文献   

3.
One of the most serious impairments which limit the data rate in long distance and high speed transmission systems is Polarization Mode Dispersion (PMD). PMD is negligible when data rate is low (i.e. in Mb/s or few Gb/s) but it will affect the high data rate transmission systems (10s of Gb/s, Tb/s etc.), as the pulse broadening severely distorts the signal during transmission. Thus it is necessary to compensate the PMD in both single and multichannel fiber optic transmission system due to increase in the traffic demand. This paper deals with a Deterministic Differential Group Delay (DDGD) method to compensate the PMD in single channel, by delaying the fast polarization component and wavelength independent Polarization Maintaining Fiber (PMF) method for multichannel PMD compensation. The DDGD method efficiently compensates the PMD upto 45 ps in single channel 40 Gb/s transmission systems. The State of Polarization (SOP) before and after the PMD and after compensation is analyzed by means of Poincare Sphere. By using PM Fiber method, simultaneous and effective compensation of PMD in multichannel system is achieved. Here, the simulation has been carried out for 4-channel (40 Gb/s), 8-channel (80 Gb/s), 16-channel (160 Gb/s) WDM systems and 32-channel (320 Gb/s) DWDM fiber optic system with each channel having the data rate of 10 Gb/s and the results of PMD compensation for all the channels are analyzed. It is seen that the PMD compensation is achieved upto 90 ps 87 ps, 84 ps and 80 ps in 4-channel, 8-channel, 16-channel WDM systems and 32-channel DWDM systems respectively. As very high data rate of 100 Gb/s and above are in practice now-a-days, compensation of PMD is enhanced to 1.6 Tb/s (16 × 100 Gb/s) data rate for 16-channel by PMF method and 74 ps of broadening is compensated effectively.  相似文献   

4.
An adaptive polarization mode dispersion (PMD) compensation experiment is reported in a 40-Gb/s phase shaped binary transmission (PSBT) communication system, with the use of a new digital signal processor (DSP)-based optical PMD compensator. PMD tolerance is found to be enhanced by 8 ps after PMD compensation with 1-dB optical signal-to-noise ratio (OSNR) penalty. Under the condition of fast change of states of polarization up to 85 rad/s in the fiber link, the performance of our PMD compensator undergoes the bit error ratio (BER) test for as long as 10 h.  相似文献   

5.
偏振模色散效应严重制约着长距离高速光纤通信的发展,偏振模色散的自适应补偿成为光通信领域研究的焦点。利用两阶段偏振模色散补偿器,采用6个自由度的粒子群优化算法(PSO),通过在线监测搜索光纤链路信号的偏振度极值作为反馈控制信息,在40Gb/s归零码高速光纤传输链路中成功实现了ms量级的偏振模色散自适应补偿。补偿前后采用庞加莱球法测量光纤链路中偏振模色散量,测量结果表明在信号中心波长1560.5nm处,差分群时延补偿前后测量值分别为21ps和1.3ps,而二阶偏振模色散补偿前后测量值分别为266ps^2和43.5ps^2。补偿后实验链路中的一阶和二阶的偏振模色散同时得到不同程度的补偿,并且系统的总的功率代价在误码率为10^-9时小于1dB。  相似文献   

6.
Abstract

We review the research progress concerning some fundamental issues related to polarization-mode dispersion (PMD) in high-speed fiber-optic transmission systems. We pay particular attention to issues such as the PMD-induced pulse broadening, PMD measurement and emulation, as well as PMD compensation. An electrical equalization technique based on a transversal filter and an optical technique based on a nonlinear chirped fiber Bragg gratings for PMD compensation will be discussed.  相似文献   

7.
光纤偏振模色散对信号偏振度的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
王目光  李唐军  简水生 《物理学报》2003,52(11):2818-2824
采用一种简化的线路传输模型,详细讨论了在高速光纤通信系统中,线路偏振模色散(PMD ),尤其是二阶PMD、输入信号偏振态等对信号偏振度(DOP)的影响,并指出以信号DOP做 反馈控制信号适合于一阶PMD优化补偿系统,但在较大二阶PMD的影响下,将增加控制算法的 复杂性,使系统可能陷入局部最优解. 关键词: 信号偏振度 偏振模色散 信号偏振态  相似文献   

8.
The variation of polarization mode dispersion (PMD) with V-parameter in single mode optical fibers due to core-ellipticity is studied by performing numerical simulations taking into account both geometrical and thermal-stress-induced birefringences as well as the variation of fiber refractive indices with wavelength. Simple empirical relations are given for calculating the mean PMD for any value of core-ellipticity and V-parameter of a standard single mode fiber. It is observed that the mean PMD saturates for V ? 1.8 leading to very small second order PMD.  相似文献   

9.
In this paper, by introducing a two-stages polarization mode dispersion (PMD) compensator after a optical fiber link with a large PMD, we compensated over 270ps first-order and 2000ps2 high-order PMD in a optical fiber link with super high PMD. Our experimental results shows that, the compensators based on the two-stages of compensator can be used to PMD compensation in a 20Gb/s OTDM system with 60 km high PMD fiber. Before compensation,270ps DGD is became into max. 7ps after compensation. At simultaneity, the tunable FBG have a function of dispersion compensation.  相似文献   

10.
We numerically investigate and compare the performance of fiber nonlinearity compensation using digital back propagation (DBP) method and pilot-aided method in coherent optical transmission systems using different fiber links. Simulations for wavelength division multiplexed (WDM) 112 Gb/s polarization division multiplexed quadrature phase shift keying (PDM-QPSK) systems with dispersion unmanaged (no DM) and dispersion managed (DM) fiber links are implemented. System Q-factor and maximum transmission distance at bit error rate (BER) of 3.8 ÿ 10?3 are calculated for performance comparison. The results show that, for system with no DM fiber link, DBP method outperforms pilot-aided method, because DBP method has better performance for intra-channel fiber nonlinearity compensation. However, for system with DM fiber link where inter-channel fiber nonlinearity plays an important role, pilot-aided method performs better than DBP method, because of its ability for inter-channel fiber nonlinearity compensation.  相似文献   

11.
The polarization-mode dispersion (PMD) tolerance of 10 Gb/s polarization-multiplexing (PM) system is investigated. Using the importance sampling (IS) method, the outage probabilities of the PM systems with three modulation formats, including on-off keying (OOK), differential phase-shift keying (DPSK) and differential quadrature phase-shift keying (DQPSK), are quantified. When the amplified spontaneous emission (ASE) noise is assumed to be dominant, we evaluate the optical power penalties caused by the PMD effect at bit error rate (BER) of 10−12. The performance of compensated PM systems with variable optical delay line is also described. The simulation results indicate that the OOK signal with higher duty cycle (DC) performs better in the PM systems with PMD compensation. It is found that the higher-order PMD impairs seriously the performance of the PM system, and phase-keying formats are more sensitive to the PMD than the OOK.  相似文献   

12.
This paper presents the design and performance enhancement of the power penalty (PP) in a dense wavelength division multiplexing based on free space optical communication (FSOC) link using digital pulse position modulation (DPPM) and on–off keying (OOK) modulation. Such a system has a high performance, low cost, robust and power efficient, reliable, excessive flexibility, and higher data rate for access networks. The system performance is evaluated for an 8-channel wavelength-division-multiplexing for hybrid fiber FSOC system at 2.5 Gbps on widely accepted modulation schemes under various atmospheric turbulence (AT) regimes conditions. The performance of system is introduced in terms of PP, bit-error rate (BER), transmission distance and the average received optical power. The numerical results shows that the improvement of the PP using DPPM modulation of 0.2–3.0 dB for weak turbulence (WT) regimes for BER of 10?6 and above 20, 25 dB for strong turbulence (ST) regimes are reported for BER of 10?6 and 10?9, as respectively (depending on the AT level). Further, we develop of improvement the PP caused by multiple-access interference about 6.686 dB which is predicted for target BER of 10?9 in WT and 1 dB at target BER of 10?6 in ST when the 8 user are active on the system of optical network units. Additionally, the optical power budget and margin losses of a system are calculated with different link length. The proposed approach of DPPM merges superiority with higher enhancement of PP about 0.8 dB for BER equal 10?9 at FSO link length lfso?=?2000 m compared to OOK at 1 dB for WT. An improvement of 2 dB is observed using the DPPM scheme over an OOK due to capability of detect pulses under background noise conditions with increased receiver sensitivity.  相似文献   

13.
Using picosecond time resolved spectroscopy, we study the extinction kinetics of the optical transmission of CdSe platelets induced by strong optical pumping. We investigate particularly the all-optical gate capabilities (resulting from the bandgap shrinkage due to the Mott transition) for laser beams the wavelength of which ranges from 676 to 678 nm. The electron-hole plasma density necessary to enable the optical switching is determined (ϱ ∼ 2 × 1017cm−3 at 20K). The switch-off time (i.e. the transparency recovery time) is also studied at different wavelengths by picosecond spectroscopy.  相似文献   

14.
This Letter describes measurements of modal birefringence (MB) and polarization mode dispersion (PMD) of a birefringent single-mode optical fiber for use at 1.5 #x03BC;m in optical wavelength. Optical frequency-domain interferometry based on a fixed analyzer method is applied to the measurement of orthogonal polarization components of light guided in the fiber. An amplified spontaneous emission source having an optical wavelength range between 1520 and 1560 nm is used. A channeled interference spectrum is obtained to measure MB and PMD in turn. These two parameters are not frequency-dependent in the above optical wavelength range and MB = 4.0 #x00D7; 10#x2212;4 and PMD = 1.33 ps/m are obtained.  相似文献   

15.
Jagjit Singh Malhotra 《Optik》2010,121(9):800-807
This paper presents the performance analysis of non-return-to-zero (NRZ), return-to-zero (RZ), chirped return-to-zero (CRZ) and carrier suppressed return-to-zero (CSRZ) data formats in optical soliton transmission link under the impact of chirp and third-order dispersion (TOD). The performance of these data formats has been analyzed on the basis of certain performance metrics, viz, bit error rate (BER), Q2 (dB), OSNR, eye opening, etc. It has been reported here that the performance of CRZ and CSRZ modulation format is better as compared to NRZ and RZ in a soliton transmission link. Further, CSRZ modulation format has been found to deliver optimum performance on the basis of performance evaluation metrics reported in this paper. In case of NRZ and CSRZ, comparatively narrow power spectrum has been observed. Best eye opening, highest value of Q2 (dB) of 18 dB and lowest value of BER of the order of 10−16 has been reported in case of CSRZ among the considered data formats. The results have been obtained by varying noise figure from 3.0 to 9.0. No considerable effect of noise was observed. It was observed that at very narrow and ultra short pulse width, OSNR value suffers heavily and reduced to even negative values in dB, thus inducing a high degree of OSNR power penalty. The results were obtained by varying chirp factor from −0.6 to +0.6. Negative chirp resulted in improved OSNR as compared to positive chirp. RZ data format yielded a broader optical spectrum, comparatively low spectral efficiency and poor OSNR thus it was found that RZ format is not suitable for optical soliton transmission under the impact of chirp and TOD.  相似文献   

16.
Tunable devices based on photonic-crystal (PhC) structures are employed in optical sources, detectors, and filters. We present the design and optimization of a wavelength-selective tunable filter with potential applications to the wavelength-division-multiplexing (WDM) systems. We analyze the design of a 1D tunable photonic-crystal filter, where tunability is achieved either by changing the temperature or the angle of incidence. The device is designed in a multilayered structure of silicon/silica (Si/SiO2) with a defect in the middle. Based on the induced variation of optical parameters introduced by an external change of temperature, we analyze the effects of these changes in temperature on the transmission of the optical filter at different angles of incidence. We show that the position of the resonance peak has a linear dependence on temperature and the square of the angle of incidence. A linear regression provides a slope of d??/dT?=?+0.06?nm/°C and d??/d?? 2?=??0.104?nm/degree2 around the transmission wavelength ???=?1.55???m. We obtain the corresponding field patterns and the transmission spectra using the transfer-matrix-method (TMM) simulations. We show the ability to tune the optical properties of the photonic-crystal filter elaborated by changing two parameters: the angle of incidence for selecting the wavelength and the temperature for fine tuning of the wavelength, which can be applied in integrated optics.  相似文献   

17.
We present a technique for pulse recovery based on real-time measurement of the differential optical phase spectrum from spectral interference patterns. Using a phase retrieval algorithm we can obtain accurate all order polarization mode dispersion (PMD) information for the optical signal and correspondingly compensate the impairment in optical transmission lines. Linear PMD is accurately extracted from measurements, and analytical simulations show recovery of pulses distorted by higher order PMD.  相似文献   

18.
We discuss the influence of polarization mode dispersion (PMD) on optical communication channels by putting special emphasis on PMD-induced pulse broadening. We present the analytical theory for PMD-induced pulse broadening, first in the deterministic and then for the random case. We then apply this theory to a comparison between a few different simple PMD-compensators. We also discuss the systems implications and outage probabilities that arise for different compensating techniques, including active optical compensation, alternative modulation formats and error correcting codes. Then we consider wavelength division multiplexing (WDM) systems, and present the unique aspects of PMD and PMD compensation that distinguish WDM transmission from the single-channel case. Finally the temporal drift is discussed, and the associated autocorrelation function is presented.  相似文献   

19.
In this paper, the performance evaluation of path-averaged soliton transmission link for various performance measures viz. OSNR, optical power, extinction ratio, bit error rate (BER) and Q factor at different levels of noise figure and values of pulse width (FWHM) has been carried out. The performance of soliton transmission link is studied, taking into account soliton interaction, amplified spontaneous emission (ASE) noise and noise figure. The model presented considers interaction in a random sequence of solitons and the effect of the ASE noise added in each amplification stage. The influence of ASE noise, noise figure and pulse width with different amplifier spacing on the BER and quality factor has been investigated. It has been shown that these play dominant roles in degrading the performance measures. We have demonstrated the capability of path-averaged (guiding-centre) soliton for a long-haul distance of 17,000 km at a bit rate of 10 Gbps without ASE effect and noise figure in each amplifier span length of 500 km. The average value of quality factor is found to be 16.6 dB and the average BER is of the order of 10−12 over the transmission distance of 17,000 km. Further, it has been investigated that a severe system penalty results on the inclusion of ASE effect and noise figure in order to achieve the same level of performance. Thus, the investigations ascertain that in order to maintain the same level of BER and Q factor, the amplifier spacing and total transmission distance reduce considerably.  相似文献   

20.
Until recently, the wavelength-division-multiplexed (WDM) transmission system has reached record capacities and distances due to innovations such as FEC (Forward Error Correction), distributed Raman amplification, new transmission fiber and advanced optical format. Optical-communication systems exclusively employed conventional On-Off Keying signals in either Non-Return-To-Zero (NRZ) or Return-To-Zero (RZ) format. Recently a number of advanced modulation formats have attracted attention. Some of these formats carry information through On-Off-Keying but also modulate the optical phase in order to enhance the robustness of signal to chromatic dispersion, optical filtering and non-linearities. Through extensive sets of simulation results, we showed that it is possible to replace a channel with higher bit-rate on existing DPSK or OOK at 10Gbit/s transmission link. Duobinary formats are ideal candidates to do it and are known for their low spectral range and high tolerance to residual chromatic dispersion. These particularities make them very attractive for both high bit rates and high distance-transmissions. Today, Phase Shaped Binary Transmission (PSBT) is considered as being the promising format for the deployment of 40Gbit/s technology on existing links at 10Gbit/s WDM long haul transmissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号