首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P.P. Yupapin  J. Ali 《Optik》2010,121(21):1925-1928
We propose the interesting results that a bright and dark soliton pulse can be localized within a nonlinear nano-waveguide. The system consists of nonlinear micro- and nano-ring resonators, whereas the soliton pulse can be input into the system and trapped within the nano-waveguide. A soliton input is chopped by the nonlinear effects known as chaos into smaller pulses. The required pulse is filtered and amplified, which can be controlled and localized within the nano-waveguide. The localized bright and dark solitons are trapped within a nano-waveguide by controlling the nano-waveguide input power, which means that the photons trapping is controlled by light.  相似文献   

2.
N. Pornsuwancharoen  P.P. Yupapin 《Optik》2010,121(13):1159-1163
We propose a novel optical system that can be used to trap (store) light coherently. The system consists of two micro and a nano-ring resonators that can be integrated into a single system, which can be employed to generate the large bandwidth by a soliton pulse within a Kerr type nonlinear medium. The balance between dispersion and nonlinear lengths of the soliton pulse exhibits the soliton behavior known as self-phase modulation, which introduces the optical output (i.e. gain) constant, which means that light pulse can be trapped, i.e. localized coherently within the nano-waveguide. The time independent soliton pulse is adiabatically localized within the nano-ring device. Results obtained have shown that the trapping of the localized temporal and spatial soliton pulses is achieved.  相似文献   

3.
N. Pornsuwancharoen  P.P. Yupapin 《Optik》2010,121(20):1863-1868
We propose a novel system of a nano-waveguide that can be used to generate the continuous spectrum, i.e. white light. The simultaneous trapping and generation of short and millimeter waves can also be performed by using either bright or dark soliton. A system consists of two micro- and a nano-ring resonators that can be integrated into a single system. The large bandwidth is generated by a soliton pulse within a Kerr-type nonlinear medium where the continuous bandwidth or wavelength can be performed. The simultaneous dark-bright solitons conversion is performed and achieved. Results obtained have shown the potential of using the technique for continuing light spectra generation, where the filtering signals are allowed by using the suitable device parameters. The advantage is that the large bandwidth separation of the short and sub-millimeter waves can be obtained, which is allowed to form the simultaneous generation of short and millimeter waves within a single system. Further, light pulse can be trapped within a nano-waveguide, which is available to form the memory device.  相似文献   

4.
We propose a novel system of a nano-waveguide that can be used to generate the continuous optical spectrum, i.e. white light. A system consists of two micro-ring resonators and a nano-ring resonator that can be integrated into a single system. The large bandwidth signal is generated using a soliton pulse propagating within a Kerr-type nonlinear medium, whereas the continuous bandwidth or wavelength of light signal can be performed. Results obtained have shown the potential of using such a system for white light source generation and amplification, which is discussed. The amplified pulse can be stored within a nano-waveguide, which is allowed to form the continuous spectrum after amplification. Alternatively, the low-level solar radiation can be amplified, and the bandwidth signals can also be enlarged.  相似文献   

5.
N. Sangwara 《Optik》2010,121(21):1959-1961
We firstly propose the interesting results of a dark soliton pulse propagating within the nonlinear micro and nano waveguides. The system consists of nonlinear micro and nano ring resonators, whereas the dark soliton is input into the system and traveling within the waveguide. A continuous dark soliton pulse is chopped to be the smaller pulses by the nonlinear effects known as chaos. The nonlinear behaviors such as chaos, bistability and bifurcation are analyzed and discussed. The power amplification is the property that can be used to perform the long distance link, where the security is the dominant reason.  相似文献   

6.
S. Glomglome  S. Mitatha  S. Suchat 《Optik》2010,121(23):2105-2109
We propose a novel system of an optical/quantum memory generation, which can be used for multi-optical/quantum memory applications. The large bandwidth of a single pulse is generated using a soliton pulse in a Kerr-type nonlinear medium, i.e. a nonlinear waveguide. The generation of the localized temporal and spatial soliton pulses within the nano-waveguide is achieved. The free spectrum range enhancement of the generated multi-soliton signals can be formed and achieved using the nano-waveguide incorporating the Mach Zhender Interferometer (MZI). The different light path of the soliton pulses is introduced by the delayed lines of the interferometer. This improves the wavelength free spectrum range, where the different entangled photon pairs can also obtained. Furthermore, the generated photons can be filtered and stored within a system, where the storage of single or multi-photons using the proposed system can be achieved, which in turn can be used for multi-optical/quantum memory applications.  相似文献   

7.
W. Siririth  O. Pingern 《Optik》2010,121(21):1955-1958
We propose a new design of a security scheme by using the nonlinear behaviors of temporal dark and bright solitons within a micro-ring resonator system for signal security application. When a dark soliton pulse is input into the proposed system, the chaotic signal is generated, where the required bright soliton pulse can be retrieved and detected by the add/drop filtering device. The chaotic wave form can be cancelled by using an add/drop device, which can be connected and used in the communication link. By using the appropriate ring parameters, simulation results obtained have shown that the soliton conversion can be performed. The ring radii used are within the ranges from 5 to 10 μms and Aeff=0.10-0.50 μm2. In application, the chaotic signal is generated and formed by the dark soliton within a nonlinear micro-ring device. This can be seen by using the add/drop device, where the bright soliton is formed and detected, which is available to use in communication link. The different temporal soliton response time is seen, the response times of 169 and 84 ns are noted for temporal dark and bright solitons, respectively, which can also be used to form the security key.  相似文献   

8.
W. Siririth  S. Mitatha  P.P. Yupapin 《Optik》2010,121(24):2191-2194
We propose a novel system of a dense wavelength division operation using the nonlinear micro ring resonators system that can be used to generate the broad output light spectra, whereas the significant increasing in channel capacity is obtained. A system consists of two micro and a nano ring resonators incorporating an add/drop filter that can be integrated into a single system. The large bandwidth signal is generated by using a soliton pulse propagating within a Kerr type nonlinear medium. The obtained results have shown the potential of using such a system for broadband light source generation, amplification, storage and regeneration, whereas the amplified signals can be stored within a nano-waveguide, which is allowed to form the regeneration of the broad light spectra after amplification. The advantage is that the specific wavelength of the broadband source, for instance, 1.50 μm can provide the super dense wavelength division multiplexing channels, whereas the increasing in channel capacity of 10,000 times is achieved.  相似文献   

9.
B. Knobnob  K. Dejhan  P.P. Yupapin 《Optik》2010,121(19):1743-1747
We propose a new system of the dark-bright solitons conversion using a micro- and nano-ring resonators incorporating an optical add/drop filter, where the add/drop filter can be used to convert the dark soliton to bright soliton. The key advantage of the system is that the detection of the dark soliton pulse is normally difficult due to low level of input power. Firstly, a dark soliton pulse is input into a micro-ring resonator, then propagating into smaller micro- and nano-ring resonators. Secondly, the add/drop filter is applied (connected) into the ring system, where the bright and the dark solitons are obtained via the drop and through (or throughput) the ports of the add/drop filter, respectively. The results obtained have shown that the detected soliton power can be controlled by the input soliton power and the ring resonator coupling coefficient, which is enough to use in the transmission link. The optical and the quantum networks using dark soliton are also discussed.  相似文献   

10.
N. Pornsuwancharoen 《Optik》2010,121(23):2159-2161
We present a novel communication band of the tunable multi-Gaussian soliton system, whereas the large bandwidth signals of the spatial soliton pulses can be generated after propagating within the nonlinear ring resonator system. A Gaussian pulse input with 20 ns pulse width, 2 W peak power, the center wavelength at 1300 nm is propagated into the nonlinear ring resonator system. Using the appropriate parameters relating to the practical device such as micro-ring radii, coupling coefficients, linear and nonlinear refractive index, we found that the multi-soliton pulse obtained have shown the potential of application for a new dense wavelength division multiplexing (DWDM) band. The soliton pulse width and free spectrum range of 400 and 7 fm are obtained, respectively, which can be used to increase the channel capacity in soliton communication. Furthermore, the soliton power obtained is available for system and link redundancy, where the output soliton power of 12 W is achieved.  相似文献   

11.
W. Khunnam 《Optik》2010,121(22):2053-2056
We propose the new solar energy conversion and storage system using the array waveguide. It can be used to generate and store solar energy within the nano-array waveguide system. The system consists of micro- and nano-ring resonators incorporating a Mach Zhender Interferometer (MZI) that can be integrated into a single system. The large bandwidth signal, i.e. white light, is generated using a soliton pulse in a Kerr-type nonlinear medium propagating within a micro-ring resonator system. The control light concept is applied using a nano-waveguide incorporating an MZI, whereas the incoherent light is filtered being coherence, which is amplified and stored within the system. The white light can be re-generated using the stored coherent light pulse. Furthermore, the combination of signals is formed by the array waveguide, which is allowed to generate the huge amount of solar energy output.  相似文献   

12.
P. Yabosdee  P.P. Yupapin 《Optik》2010,121(23):2117-2121
We propose a new concept of a distributed sensing system using a nano-waveguide and an array waveguide. The small change in physical quantity affects the change in device parameters such as refractive index or length, which is relatively absorbed and observed by the resonant wavelength. In principle, the dense wavelength separation is generated by using a soliton pulse propagating within a ring resonator system, whereas a resonant signal can be stored within the nano-waveguide, i.e. a transducer, which is formed by the sensing device. Induced change in the resonant signal at each wavelength occurs, and can be detected by using the optical spectrum analyzer. Such a proposed device is suitable to perform the measurements in the nano-scale regime such as force, stress and temperature. Moreover, the distributed or multiplexed sensing applications are also available using the nano-waveguide sensing device incorporating the array waveguide, which is discussed in details. Quantum measurement using the same system is also described.  相似文献   

13.
K. Tamee  S. Mitatha 《Optik》2011,122(16):1470-1473
We propose a new concept of a nano-sensing transducer system using a nano-waveguide. The small change in physical quantity affects to the change in device parameters such as refractive index or length which is relatively absorbed and observed by the resonant signals. In principle, the stored light pulse at the specified wavelength is generated by using a soliton propagating within the ring resonators, whereas a resonant signals can be stored within the nano-waveguide, i.e. a sensing transducer, which is formed by the sensing ring device. The induced change in the resonant signals by the surrounded environment is occurred, and can be detected by using the optical/quantum processor. Such a proposed device is namely suitable to perform the measurements in the nano-scale regime such as force, stress and temperature.  相似文献   

14.
We first propose a new system of a third harmonic generation by using a soliton pulse circulating in the integrated micro-ring devices. By using this system, the ultra-short pulse in the attosecond (as) and beyond can be easily generated. In principle, light pulse known as a soliton pulse is input into a design system. It consist the three-stage micro-ring resonators, where the ring radii are within the range between 5 and 35 μm. With the appropriate parameters such as ring radius, coupling ratio and nonlinear refractive index, the attosecond pulse is generated by filtering the chaotic signals within the micro-ring devices. One of the results obtained has shown that the generation of the ultra narrow pulse (spectral width) and sharp tip is achieved. The potential of using such a pulse for picometer (pm)-scale lithography is plausible.  相似文献   

15.
S. Chaiyasoonthorn 《Optik》2010,121(3):268-273
We firstly demonstrate a simple system of fast light generation using a soliton pulse circulating in the integrated micro ring devices. Using such a system, the attosecond pulse and beyond can be easily generated. Simulation results obtained have shown that the generation of a very narrow full-width at half maximum (FWHM) and sharp tip are achieved. In principle, light pulse known as a soliton pulse is generated and input into a three-stage micro ring resonator, where the ring radii are within the ranges from 5 to 15 μm. With some selected parameters such as ring radii, coupling coefficients and nonlinear refractive indices, the extremely short pulse is generated, which means fast light is generated from ns to zs and beyond by using the simple system.  相似文献   

16.
P.P. Yupapin  N. Sangwara 《Optik》2010,121(8):732-738
We present the interesting results of nonlinear behaviors of a soliton pulse within a nonlinear micro ring resonator system, where the optical filter characteristics in terms of frequency, wavelength and time can be functioned by using the chaotic filter within the micro ring resonator system. There are three forms of applications using the chaotic soliton behaviors and optical filter characteristics presented. Firstly, the simultaneous up-link and down-link frequency bands can be filtered and the required frequency bands obtained. Secondly, we propose the simple system of an extremely narrow light pulse generation over the spectrum range, where the required wavelengths can be filtered and obtained. Finally, a simple system of fast light generation by using a soliton pulse circulating in the integrated micro ring devices is proposed. Using such a system, an attosecond pulse and beyond can be easily filtered and obtained.  相似文献   

17.
In this paper, we theoretically discuss the soliton properties of light pulse transportation on the surface of an ionic crystal having strong nonlinear interactions between ions of unit cells. We analyze in detail the dark solitons when the nonlinear coefficient g is positive and negative, respectively. It is found that whether the nonlinear coefficient g is positive or negative, the dark solitons can be formed over the whole dispersion relation area of surface polaritons considering nonlinear effects. Attention should be paid to the fact that around ωTO, the light pulse can form advanced dark solitons, and there is a switching area from advanced dark soliton to retarded dark soliton near ωTO. We also discuss the effects of higher nonlinear dispersion on the solitons.  相似文献   

18.
M. Bunruangses  S. Mitatha 《Optik》2010,121(23):2140-2143
We present a novel system of a Gaussian soliton generation using a 1.30 μm optical pulse in a nonlinear micro-ring resonator system, which can be used to form the soliton pulse trains within the new wavelength band. By using the suitable parameters, the soliton pulse trains with the center wavelength at 1.30 μm can be generated after the intense Gaussian pulse is input into the nonlinear micro-ring resonator system. The initial pulse bandwidth is enlarged and the signal amplified by the nonlinear Kerr effects type within the ring resonator. The simulation values are used associating with the practical device parameters, whereas the obtained results have shown that the wavelength enhancement of the center wavelength can be achieved. Furthermore, the maximum soliton output power of 12 W is obtained, which is available to perform the long-distance communication link. The common problem of soliton dispersion is minimized by the zero dispersion condition in this case. The major advantage of the proposed system is that the dense wavelength division of the center wavelength with the spectral width of 7.0 pm (10−15 m) and the free spectrum range of 400 pm can be generated and achieved. This is available for the used/installed wavelength enhancement, which can provide more available channel capacity in the existed public optical network.  相似文献   

19.
N. Pornsuwancharoen  P.P. Yupapin 《Optik》2010,121(12):1111-1115
We propose a new system of a continuous variable quantum key distribution via a wavelength router in the optical networks. A large bandwidth signal is generated by a soliton pulse propagating within the micro ring resonator, which is allowed to form the continuous wavelength with large tunable channel capacity. There are two forms of localized soliton pulses proposed. Firstly, the required information is transmitted via the localized temporal soliton pulse. Secondly, the continuous variable quantum key distribution is formed by using the localized spatial soliton pulse via a quantum router and networks, which is formed by using and optical add/drop multiplexer incorporating in the network. The localized soliton pulses are available for add/drop signals to/from the optical network, where the high security and capacity information can be performed.  相似文献   

20.
GenerationofFundamentalDarkSolitonTraininPositiveDispersiondecreasingFibersXUWenchengWENShuangchun1)GUOQiLIAOChangjunLIUSon...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号