首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 599 毫秒
1.
In this paper, we find the exact bright, dark and gray analytical nonautonomous soliton solutions of the generalized CQNLSE with spatially inhomogeneous group velocity dispersion (GVD) and amplification or attenuation by the similarity transformation method under certain parametric conditions. As an example, we investigate their propagation dynamics in the soliton control system. In addition, the interaction of two neighboring solitary waves is discussed, and the results show that the interaction of two neighboring solitary waves can be restricted by choosing the distributed coefficients appropriately. Finally, the stability of the solutions is checked by direct numerical simulation.  相似文献   

2.
利用达布变换法(Darboux transformation),解析的研究了生长及耗散波色-爱因斯坦凝聚(BEC)中的怪波.通过降维和无量纲化,将描述BEC的Gross-Pitaevskii (GP)方程转化成一维无量纲非线性薛定谔方程.利用达布变换,得到了一维非线性薛定谔方程的怪波解析解.根据解析结果,数值模拟了生长及耗散BEC中怪波的性质.结果表明,BEC中出现了一种典型的双洞怪波,并且BEC生长会延缓怪波的消失,而BEC的耗散会加速怪波的消失.  相似文献   

3.
In this paper, we construct the travelling wave solutions to the perturbed nonlinear Schrödinger’s equation (NLSE) with Kerr law non-linearity by the extended (G′/G)-expansion method. Based on this method, we obtain abundant exact travelling wave solutions of NLSE with Kerr law nonlinearity with arbitrary parameters. The travelling wave solutions are expressed by the hyperbolic functions, trigonometric functions and rational functions.  相似文献   

4.
In this article, we present studies on therahertz (THz) wave generation and frequency up-conversion in a periodically poled lithium niobate (PPLN) crystal. A frequency at 1.37 THz was generated as femtosecond pump pulses passed through a PPLN crystal with grating periods of 30 μm. The pump-induced THz wave interacts with the probe wave in the crystal by frequency mixing. The frequency up-converted THz wave is easily detected by a normal photodiode. A new scheme for generation and detection of THz wave in one non-linear crystal was proposed.  相似文献   

5.
In this Letter, we investigate the perturbed nonlinear Schrödinger's equation (NLSE) with Kerr law nonlinearity. All explicit expressions of the bounded traveling wave solutions for the equation are obtained by using the bifurcation method and qualitative theory of dynamical systems. These solutions contain bell-shaped solitary wave solutions, kink-shaped solitary wave solutions and Jacobi elliptic function periodic solutions. Moreover, we point out the region which these periodic wave solutions lie in. We present the relation between the bounded traveling wave solution and the energy level h. We find that these periodic wave solutions tend to the corresponding solitary wave solutions as h increases or decreases. Finally, for some special selections of the energy level h, it is shown that the exact periodic solutions evolute into solitary wave solution.  相似文献   

6.
In this Letter, we discuss the electron acoustic (EA) waves in plasmas, which consist of nonthermal hot electrons featuring the Tsallis distribution, and obtain the corresponding governing equation, that is, a nonlinear Schrödinger (NLS) equation. By means of Modulation Instability (MI) analysis of the EA waves, it is found that both electron acoustic solitary wave and rogue wave can exist in such plasmas. Basing on the Darboux transformation method, we derive the analytical expressions of nonlinear solutions of NLS equations, such as single/double solitary wave solutions and single/double rogue wave solutions. The existential regions and amplitude of solitary wave solutions and the rogue wave solutions are influenced by the nonextensive parameter q and nonthermal parameter α. Moreover, the interaction of solitary wave and how to postpone the excitation of rogue wave are also studied.  相似文献   

7.
We investigate the properties of electromagnetic wave propagating in a one-dimensional photonic crystal (PC) consisting of two metamaterials with different dispersive model. The reflection gaps of metamaterials multilayer system are independent of the incident angle. Not only TE wave but also TM wave, the omnidirectional reflection gaps exhibit the same behavior with different incident angle for metamaterials as double negative material. We also observed that the frequency regimes of zero-transmission bands are different for TE and TM wave with the same incident angle, when one of metamaterials is the permittivity negative (ε < 0) and the other is the double negative. Correspondingly, we show that the result can be act as an efficient polarization splitter. At last, we discuss the resonant tunneling effect. If the total reflection condition is satisfied, the resonant tunneling effect is enhanced as the incident angle increases, even though the propagation wave is evanescent wave in the single layer medium.  相似文献   

8.
The stationary phase method is frequently adopted for calculating tunneling phase times of analytically-continuous Gaussian or infinite-bandwidth step pulses which collide with a potential barrier. This report deals with the basic concepts on deducing transit times for quantum scattering: the stationary phase method and its relation with delay times for relativistic and non-relativistic tunneling particles. After reexamining the above-barrier diffusion problem, we notice that the applicability of this method is constrained by several subtleties in deriving the phase time that describes the localization of scattered wave packets. Using a recently developed procedure - multiple wave packet decomposition - for some specifical colliding configurations, we demonstrate that the analytical difficulties arising when the stationary phase method is applied for obtaining phase (traversal) times are all overcome. In this case, we also investigate the general relation between phase times and dwell times for quantum tunneling/scattering. Considering a symmetrical collision of two identical wave packets with an one-dimensional barrier, we demonstrate that these two distinct transit time definitions are explicitly connected. The traversal times are obtained for a symmetrized (two identical bosons) and an antisymmetrized (two identical fermions) quantum colliding configuration. Multiple wave packet decomposition shows us that the phase time (group delay) describes the exact position of the scattered particles and, in addition to the exact relation with the dwell time, leads to correct conceptual understanding of both transit time definitions. At last, we extend the non-relativistic formalism to the solutions for the tunneling zone of a one-dimensional electrostatic potential in the relativistic (Dirac to Klein-Gordon) wave equation where the incoming wave packet exhibits the possibility of being almost totally transmitted through the potential barrier. The conditions for the occurrence of accelerated and, eventually, superluminal tunneling transmission probabilities are all quantified and the problematic superluminal interpretation based on the non-relativistic tunneling dynamics is revisited. Lessons concerning the dynamics of relativistic tunneling and the mathematical structure of its solutions suggest revealing insights into mathematically analogous condensed-matter experiments using electrostatic barriers in single- and bi-layer graphene, for which the accelerated tunneling effect deserves a more careful investigation.  相似文献   

9.
We perform a detailed analysis of the band structure, phonon dispersion, and electron-phonon coupling of three types of small-radius carbon nanotubes (CNTs): (5,0), (6,0), and (5,5) with diameters 3.9, 4.7, and 6.8 Å respectively. The large curvature of the (5,0) CNTs makes them metallic with a large density of states at the Fermi energy. The density of states is also strongly enhanced for the (6,0) CNTs compared to the results obtained from the zone-folding method. For the (5,5) CNTs the electron-phonon interaction is dominated by the in-plane optical phonons, while for the ultrasmall (5,0) and (6,0) CNTs the main coupling is to the out-of-plane optical phonon modes. We calculate electron-phonon interaction strengths for all three types of CNTs and analyze possible instabilities toward superconducting and charge-density wave phases. For the smallest (5,0) nanotube, in the mean-field approximation and neglecting Coulomb interactions, we find that the charge-density wave transition temperature greatly exceeds the superconducting one. When we include a realistic model of the Coulomb interaction we find that the charge-density wave is suppressed to very low temperatures, making superconductivity dominant with the mean-field transition temperature around one K. For the (6,0) nanotube the charge-density wave dominates even with the inclusion of Coulomb interactions and we find the mean-field transition temperature to be around five Kelvin. We find that the larger radius (5,5) nanotube is stable against superconducting and charge-density wave orders at all realistic temperatures.  相似文献   

10.
We study a possible solitary wave solution of the nonlinear Schrödinger equation (NLSE). It is shown that the wave can be both modulated and nonmodulated depending on a ratio of the envelope and the carrier wave velocities. We also study the same type of the soliton solution in DNA dynamics. We show that the ratio of these two velocities is a measure of modulation and we conclude that the modulated wave is more stable than the nonmodulated one. Finally, we solved the problem concerning three parameters arising from the applied procedure for the solution of the NLSE.  相似文献   

11.
One of the challenges in numerical simulation of wave–turbulence interaction is the precise setup and maintenance of wave and turbulence fields. In this paper, we investigate techniques for the generation and suppression of specific surface wave modes, the generation of turbulence in an inhomogeneous physical domain with a wavy boundary-fitted grid, and the generation and maintenance of waves and turbulence during the complex wave–turbulence interaction process. We apply surface pressure to generate and suppress waves. Based on the solution of linearized Cauchy–Poisson problem, we derive three pressure expressions, which lead to a δ-function method, a time-segment method, and a gradual method. Numerical experiments show that these methods generate waves as specified and eliminate spurious waves effectively. The nonlinear wave effect is accounted for with a time-relaxation method. For turbulence generation, we extend the linear forcing method to an inhomogeneous physical domain with a curvilinear computational grid. Effects of force distribution and computational grid distortion are examined. For wave–turbulence interaction, we develop an algorithm to instantaneously identify specific progressive and standing waves. To precisely control the wave amplitude in a complex turbulent flow field, we further develop an energy controlling method. Finally, a simulation example of wave–turbulence interaction is presented. Results show that turbulence has unique features in the presence of waves. Velocity fluctuations are found to be strongly dependent on the wave phase; variations of these fluctuations are explained by the pressure–strain correlation associated with the wave-induced strain field.  相似文献   

12.
Abstract

In this paper, we introduce and study rigorously a Hamiltonian structure and soliton solutions for a weakly dissipative and weakly nonlinear medium that governs two Korteweg–de vries (KdV) wave modes. The bounded solution and traveling wave solution such as cnoidal wave and solitary wave are obtained. Subsequently, the equation is numerically solved by Fourier spectral method for its two-soliton solution. These solutions may be useful to explain the nonlinear dynamics of waves for an equation supporting multi-mode weakly dispersive and nonlinear wave medium. In addition, we give an explicit explanation of the mathematics behind the soliton phenomenon for a better understanding of the equation.  相似文献   

13.
The dynamics of waves in weakly nonlinear dispersive media can be described by the nonlinear Schrödinger equation (NLSE). An important feature of the equation is that it can be derived in a number of different physical contexts; therefore, analogies between different fields, such as for example fiber optics, water waves, plasma waves and Bose–Einstein condensates, can be established. Here, we investigate the similarities between wave propagation in optical Kerr media and water waves. In particular, we discuss the modulation instability (MI) in both media. In analogy to the water wave problem, we derive for Kerr-media the Benjamin–Feir index, i.e. a nondimensional parameter related to the probability of formation of rogue waves in incoherent wave trains.  相似文献   

14.
吴庚坤  宋金宝  樊伟 《物理学报》2017,66(13):134302-134302
针对弱非线性的Longuet-Higgins模型在模拟强非线性畸形波海面时所存在的问题,采用修正的相位调制法模拟一维畸形波时间、空间波面,该方法能够实现畸形波的定时定点生成,并且其波形既能保持目标谱的频谱结构,又能较大程度地满足波浪序列的统计特性.同时,基于改进的双尺度(TSM)法及时域有限差分法建立畸形波的电磁散射模型,经过相对平均偏差和均方根偏差误差分析后,基于TSM法研究分析了畸形波及其背景海面波的归一化雷达散射截面(NRCS)的计算结果.实验表明,合成孔径雷达成像中畸形波的NRCS比背景波要小,即畸形波的合成孔径雷达图像成像比背景波要灰暗,因此可以将NRCS作为畸形波的特征识别标识.通过分析研究不同极化方式、入射角、入射频率条件下畸形波与背景波面的电磁散射特性实验数据得出:当二者的NRCS差值大于-11.8 dB及以上时,即认为产生畸形波,这为实际的工程应用提供了参照标准.  相似文献   

15.
16.
We study breathers and solitons on different backgrounds in optical fiber system, which is governed by generalized coupled Hirota equations with four wave mixing effect. On plane wave background, a transformation between different types of solitons is discovered. Then, on periodic wave background, we find breather-like nonlinear localized waves of which formation mechanism are related to the energy conversion between two components. The energy conversion results from four wave mixing. Furthermore, we prove that this energy conversion is controlled by amplitude and period of backgrounds. Finally, solitons on periodic wave background are also exhibited. These results would enrich our knowledge of nonlinear localized waves' excitation in coupled system with four wave mixing effect.  相似文献   

17.
谢涛  南撑峰  旷海兰  邹光辉  陈伟 《物理学报》2009,58(6):4011-4019
提出了一种计算反常波海面参数及色散关系的数值方法.将反常波海面看成变幅变频的波列,在各个具体时间、空间点用不同参数的延拓正弦波进行插值.在具体的时间、空间点处,根据海面及其一阶、二阶导数关系,求出相应的延拓正弦波各个参数.数值模拟出的振幅结果表明该方法有效,利用该方法计算的反常波海面参数进行海面重构的结果与原海面完全符合.比较非线性海面波数和角频率的关系式ω2/k与重力加速度g值,发现反常波海面的主要非线性色散区域不是位于反常波区域,而是位于 关键词: 反常波 非线性 色散  相似文献   

18.
In this paper we consider the problem of solitary wave propagation in a weakly disordered potential. Through a series of careful numerical experiments we have observed behavior which is in agreement with the theoretical predictions of Kivshar et al., Bronski, and Gamier. In particular we observe numerically the existence of two regimes of propagation. In the first regime the mass of the solitary wave decays exponentially, while the velocity of the solitary wave approaches a constant. This exponential decay is what one would expect from known results in the theory of localization for the linear Schrödinger equation. In the second regime, where nonlinear effects dominate, we observe the anomalous behavior which was originally predicted by Kivshar et al. In this regime the mass of the solitary wave approaches a constant, while the velocity of the solitary wave displays an anomalously slow decay. For sufficiently small velocities (when the theory is no longer valid) we observe phenomena of total reflection and trapping.  相似文献   

19.
Fractional partial differential equations with more than one fractional derivative in time describe some important physical phenomena, such as the telegraph equation, the power law wave equation, or the Szabo wave equation. In this paper, we consider two- and three-dimensional multi-term time and space fractional partial differential equations. The multi-term time-fractional derivative is defined in the Caputo sense, whose order belongs to the interval (1,2],(2,3],(3,4] or (0,m], and the space-fractional derivative is referred to as the fractional Laplacian form. We derive series expansion solutions based on a spectral representation of the Laplacian operator on a bounded region. Some applications are given for the two- and three-dimensional telegraph equation, power law wave equation and Szabo wave equation.  相似文献   

20.
R NARAIN  A H KARA 《Pramana》2011,77(3):555-570
In this paper we discuss symmetries of classes of wave equations that arise as a consequence of some Vaidya metrics. We show how the wave equation is altered by the underlying geometry. In particular, a range of consequences on the form of the wave equation, the symmetries and number of conservation laws, inter alia, are altered by the manifold on which the model wave rests. We find Lie and Noether point symmetries of the corresponding wave equations and give some reductions. Some interesting physical conclusions relating to conservation laws such as energy, linear and angular momenta are also determined. We also present some interesting comparisons with the standard wave equations on a flat geometry. Finally, we pursue the existence of higher-order variational symmetries of equations on nonflat manifolds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号