首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Multiphonon resonant Raman scattering in N‐doped ZnO films was studied, and an enhancement of the resonant Raman scattering process as well as longitudinal optical (LO) phonon overtones up to the sixth order were observed at room temperature. The resonant Raman scattering intensity of the 1LO phonon in N‐doped ZnO appears three times as strong as that of undoped ZnO, which mainly arises from the defect‐induced Raman scattering caused by N‐doping. The nature of the 1LO phonon at 578 cm−1 is interpreted as a quasimode with mixed A1 and E1 symmetry because of the defects formed in the ZnO lattice. In addition, the previously neglected impurity‐induced two‐LO‐phonon scattering process was clearly observed in N‐doped ZnO. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
秦莉  张喜田  梁瑶  张锷  高红  张治国 《物理学报》2006,55(6):3119-3123
利用化学气相沉积(CVD)的方法通过热氧化高纯锌粉在硅衬底上得到氧化锌微米花. X射线衍射(XRD)结果表明,其具有六角纤锌矿晶体结构.场发射扫描电子显微镜(FE-SEM)图像表明,合成的样品是由很多长且直的ZnO亚微米棒组成的微米花, 具有六角棱柱端面,棒的长度在30μm到50μm之间.在背向共振拉曼散射光谱测量中,观测到ZnO A1(LO)的五阶声子紫外共振拉曼散射,表明样品具有较高的晶体质量.在变温光致发光谱测量中,观察到明显的中性受主束缚激子(A0X)的 关键词: ZnO微米花 光致发光 共振拉曼 “负热淬灭”效应  相似文献   

3.
Raman scattering (including nonresonant, resonant, and surface enhanced scattering) of light by optical and surface phonons of ZnO nanocrystals and nanorods has been investigated. It has been found that the nonresonant and resonant Raman scattering spectra of the nanostructures exhibit typical vibrational modes, E 2(high) and A 1(LO), respectively, which are allowed by the selection rules. The deposition of silver nanoclusters on the surface of nanostructures leads either to an abrupt increase in the intensity (by a factor of 103) of Raman scattering of light by surface optical phonons or to the appearance of new surface modes, which indicates the observation of the phenomenon of surface enhanced Raman light scattering. It has been demonstrated that the frequencies of surface optical phonon modes of the studied nanostructures are in good agreement with the theoretical values obtained from calculations performed within the effective dielectric function model.  相似文献   

4.
The dependence of the shape and the intensity of the first order resonant Raman line 1LO on the direction and magnitude of phonon wave vector has been investigated in CdS crystals. Comparison of RRS in different orientations shows that in the most pure samples the phonon wave vector is determined, to a great extent, by the momentum conservation law. In Ni doped crystals one can observe violation of momentum conservation, resulting in a sharp increase of 1 LO intensity. The shape of the 1 LO line in such sample does not depend on the experimental orientation. For the first time the dependence of the Raman intensity on the scattering angle has been observed by the comparison of forward and backward scattering spectra. Observation of this dependence shows that the free excitons are the dominating intermediate states in the resonant Raman scattering in A2B6 compounds.  相似文献   

5.
王瑞敏  陈光德 《物理学报》2009,58(2):1252-1256
利用325nm紫外光激发,对不同组分的InxGa1-xN薄膜的喇曼散射谱进行了研究.在光子能量大于带隙的情况下,观察到显著增强的二阶A1(LO)声子散射峰.二阶LO声子峰都从一阶LO声子的二倍处向高能方向移动,移动量随样品In组分的增加而增大,认为是带内Frhlich相互作用决定的多共振效应引起的.分析了一阶LO声子散射频率和峰型与In组分的关系.在喇曼谱中观察到样品存在相分离现象,并与X射线衍射的实验结果进行 关键词xGa1-xN合金')" href="#">InxGa1-xN合金 紫外共振喇曼散射 二阶声子 相分离  相似文献   

6.
Undoped and cesium‐doped zinc oxide (ZnO) thin films have been deposited on sapphire substrate (0001) using the sol–gel method. Films were preheated at 300 °C for 10 min and annealed at 600 and 800 °C for 1 h. The grown thin films were confirmed to be of wurtzite structure using X‐ray diffraction. Surface morphology of the films was analyzed using scanning electron microscopy. The photoluminescence (PL) spectra of ZnO showed a strong ultraviolet (UV) emission band located at 3.263 eV and a very weak visible emission associated with deep‐level defects. Cesium incorporation induced a blue shift of the optical band gap and quenching of the near‐band‐edge PL for nanocrystalline thin film at room temperatures because of the band‐filling effect of free carriers. A shift of about 10–15 cm−1 is observed for the first‐order longitudinal‐optical (LO) phonon Raman peak of the nanocrystals when compared to the LO phonon peak of bulk ZnO. The UV resonant Raman excitation at RT shows multiphonon LO modes up to fifth order. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
用等离子体源辅助分子束外延(P-MBE)方法在蓝宝石(0001)面上生长出了高质量的ZnO薄膜,并对其结构和发光特性进行了研究。在XRD中只观察到ZnO薄膜的(0002)衍射峰,其半高宽(FWHM)值为0.18°;而在共振Raman散射光谱中观测到1LO(579 cm-1 )和2LO(1 152 cm-1 )两个峰位,这些结果表明ZnO薄膜具有单一c轴取向和高质量的纤维锌矿晶体结构。在吸收光谱中观测到自由激子吸收和激子-LO声子吸收峰,这表明在ZnO薄膜中激子稳定的存在于室温,并且两峰之间能量间隔为71.2 meV,与文献上报道的ZnO纵向光学声子能量(71 meV)相符。室温下在光致发光光谱(PL)中仅观测到位于376 nm处的自由激子发光峰,而没有观测到与缺陷相关的深能级发射峰,表明ZnO薄膜具有较高的质量和低的缺陷密度。  相似文献   

8.
Among the family of rare earth (RE) dopants, the doping of first member Ce into GaN is the least studied system. This article reports structure properties of Ce‐doped GaN realized by technique of ion implantation. Ce ions were implanted into metal organic chemical vapor deposition grown n‐ and p‐GaN/sapphire thin films at doses 3 × 1014 and 2 × 1015 cm−2. X‐ray diffraction scans and Raman scattering measurements exhibited expansion of lattice in the implanted portion of the samples. First order Raman scattering spectra show appearance of several disorder‐activated Raman scattering modes in addition to typical GaN features. A dose‐dependent decrease in intensity of E2 mode was observed in Raman the spectra of the implanted samples. Ultraviolet Raman spectra of implanted samples show complete quenching of photoluminescence emission and appearance of multiple A1(LO) phonon scattering modes up to fifth order. Moreover, a decrease in intensity and an increase in line width of LO modes as a function of wavenumber were observed for implanted samples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
In Dy3+ and Li+ codoped ZnO nanowires, the additives accumulate preferentially in {0001} planes, resulting in serious breakdown of the translational symmetry in ab plane and modification of the phonon oscillation field. Not only acoustic overtones, silent optical modes, surface optical (SO) phonon modes, and multi‐phonon processes can be effectively observed in the nonresonant Raman scattering (RS) and the Fourier‐transform infrared (FTIR) spectra, but the quasi‐LO and TO modes of mixed A1 and E1 symmetry also show a noticeable red shift from E1 symmetry (in ab plane) to A1 symmetry (along c axis). The presence of dislocations and internal strain at the surface layer rich in additives, coming from the segregation of additives, forms a quasi‐bilayer system, resulting in the appearance and enhancement of SO phonon modes in RS and FTIR spectra. The Fano interference, originating from the interaction between the discrete scattering from phonons and the continuum scattering from laser‐induced electrons in the doped nanostructures, leads to typical asymmetric lineshapes on the lower wavenumber sides. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
In studying resonant Raman scattering in the vicinity of the A and B excitons of CdSe, we have observed three new Raman peaks. Two of the peaks have been identified as two-phonon modes consisting of a longitudinal optical (LO) phonon plus respectively a transverse acoustic (TA) and a longitudinal acoustic (LA) phonon. A theory which involves the scattering of photoexcited B excitons to the A exciton by acoustic phonons via the piezoelectric exciton-phonon interaction was found to explain quantitatively the peak positions, lineshape and resonance enhancements of the observed peaks.  相似文献   

11.
Raman scattering spectroscopy has been used for the characterization of zinc oxide nanoparticles obtained by mechanical activation in a high‐energy vibro‐mill and planetary ball mill. Raman modes observed in spectra of nonactivated sample are assigned to Raman spectra of the ZnO monocrystal, while the spectra of mechanically activated samples point out to the structural and stoichiometric changes, depending on the milling time and the choice of equipment. Observed redshift and peak broadening of the E2high and E1 (LO) first‐order Raman modes are attributed to increased disorder induced by mechanical milling, followed by the effects of phonon confinement due to correlation length decrease. The additional modes identified in Raman spectra of activated ZnO samples are related to the surface optical phonon modes, due to the intrinsic surface defects and presence of ZrO2as extrinsic defects introduced by milling in zirconia vials. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Resonant Raman scattering of optical phonons in self-assembled quantum dots   总被引:1,自引:0,他引:1  
We have investigated the carrier relaxation mechanism in InGaAs/GaAs quantum dots by photoluminescence excitation (PLE) spectroscopy. Near-field scanning optical microscope successfully shows that a PLE resonance at a relaxation energy of 36 meV can be seen in all single-dot luminescence spectra, and thus can be attributed to resonant Raman scattering by a GaAs LO phonon to the excitonic ground state. In addition, a number of sharp resonances observed in single-dot PLE spectra can be identified as resonant Raman features due to localized phonons, which are observed in the conventional Raman spectrum. The results reveal the mechanism for the efficient relaxation of carriers observed in self-assembled quantum dots: the carriers can relax within the continuum states, and make transitions to the excitonic ground state by phonon emission.  相似文献   

13.
ZnO films were prepared using radio frequency magnetron sputtering on Si(1 1 1) substrates that were sputter-etched for different times ranging from 10 to 30 min. As the sputter-etching time of the substrate increases, both the size of ZnO grains and the root-mean-square (RMS) roughness decrease while the thickness of the ZnO films shows no obvious change. Meanwhile, the crystallinity and c-axis orientation are improved by increasing the sputter-etching time of the substrate. The major peaks at 99 and 438 cm−1 are observed in Raman spectra of all prepared films and are identified as E2(low) and E2(high) modes, respectively. The Raman peak at 583 cm−1 appears only in the films whose substrates were sputter-etched for 20 min and is assigned to E1(LO) mode. Typical ZnO infrared vibration peak located at 410 cm−1 is found in all FTIR spectra and is attributed to E1(TO) phonon mode. The shoulder at about 382 cm−1 appearing in the films whose substrates were sputter-etched for shorter time (10-20 min) originates from A1(TO) phonon mode. The results of photoluminescence (PL) spectra reveal that the optical band gap (Eg) of the ZnO films increases from 3.10 eV to 3.23 eV with the increase of the sputter-etching time of the substrate.  相似文献   

14.
《Current Applied Physics》2018,18(2):267-271
We report resonant Raman scattering results of CdTe/ZnTe self-assembled quantum dot (QD) structures. Photoluminescence spectra reveal that the band gap energies of the CdTe QDs decrease with the increase of CdTe thickness from 2.0 to 3.5 monolayers, which indicates that the size of the QDs increases. When the CdTe/ZnTe QD structures are excited by non-resonant excitation, a longitudinal optical (LO) phonon response from the ZnTe barrier material is observed at 206 cm−1. In contrast, when the CdTe/ZnTe QD structures are resonantly excited near the band gap energy of the QDs, additional phonon modes emerge at 167 and 200 cm−1, while the ZnTe LO phonon response completely disappears. The 167 cm−1 mode corresponds to the LO phonon of the CdTe QDs. A spatially resolved Raman scattering from the cleaved edge of the QD sample reveals that the 200 cm−1 mode is strongly localized at the interface between the CdTe QDs and ZnTe cap layer. This phonon mode is attributed to the interface optical (IO) phonon. The analytically calculated value of the IO phonon energy using a dielectric continuum approach, assuming a spherical dot boundary, agrees well with the experimental value.  相似文献   

15.
Pulsed laser deposition and various catalysts are used to fabricate ZnO micro- and nanorods at temperatures close to the optimum temperature for each catalyst. A comparative analysis of the optical and structural properties of the rods shows that, as the temperature of growth on Al2O3(11–20) substrates decreases, the internal stresses in the rods decrease, which improves their structure and optical properties. This effect is not observed for GaN/Si substrates because of the high stresses induced by the difference in the lattice parameters. An increase in the synthesis temperature leads to an increase in the lattice strains and the concentration of point defects, the relaxation of selection rules, and the appearance of numerous phonon A 1(LO) overtones. The lattice strains calculated from unit cell parameter a and the shift in the phonon A 1(LO) frequency agree qualitatively. The study of the photoluminescence of the rods shows that a decrease in the synthesis temperature decreases the imperfection of the ZnO rods and improves their optical properties for UV applications.  相似文献   

16.
The magnetron sputtering of Ag nanoparticles onto ZnO nanorod arrays is studied. The lateral faces of the nanorods are coated with nanoparticles at a much lower density as compared to the flat faces at comparable sputtering times. The silver density is high on the edges of the lateral faces of the nanorods. The plasmon absorption in the synthesized arrays of nanorods coated with individual Ag nanoparticles is maximal at 450?C500 nm. The appearance of local plasmon excitations increases the intensity of the multiphonon processes with the participation of ZnO polar modes in Raman spectra. The cross section of resonance Raman scattering for A 1(LO) phonon overtones increases with the equivalent Ag film thickness.  相似文献   

17.
Low-temperature photoluminescence, exciton reflection, and multiphonon resonant Raman scattering spectra of Ni-and Co-doped Zn1−x MnxTe crystals were investigated. Intense emission occurs in a broad spectral region (1100–17 000 cm−1) in the crystals containing Ni atoms. It is caused by intracenter transitions involving Mn2+ ions and transitions between the conduction band and a level of the doubly charged acceptor. The features of the exciton photoluminescence and multiphonon resonant Raman scattering involving longitudinal-optical (LO) phonons at various temperatures are investigated. The insignificant efficiency of the localization of excitons on potential fluctuations in the Zn1−x MnxTe:Co crystals is established. A temperature-induced increase in the intensity of the 5LO multiphonon resonant Raman scattering line due to the approach of the conditions for resonance between this line and the ground exciton state is observed in these crystals. Fiz. Tverd. Tela (St. Petersburg) 40, 616–621 (April 1998)  相似文献   

18.
本文介绍GaAs/AlAs超晶格的室温近共振喇曼散射测量结果。由于超晶格中Fr?hlich相互作用的共振增强效应,GaAs LO声子偶模的散射得到了很大的增强。和前人的结果一样,在偏振谱我们观察到了偶模。但和前人的结果不同,在退偏振谱中我们观察到的是奇模,而不是偶模。从而证明了在近共振条件下LO声子限制模仍遵从与非共振时一样的选择定则。二级喇曼散射实验结果表明,在偏振谱中二级谱是由两个偶模组合而成,而在退偏振谱中的二级谱与前人的结果不同,由一个奇模与一个偶模组合而成。上述结果与最近提出的黄朱模型的预言是一 关键词:  相似文献   

19.
Transparent conducting polycrystalline Al-doped ZnO (AZO) films were deposited on sapphire substrates at substrate temperatures ranging from 200 to 300 °C by pulsed laser deposition (PLD). X-ray diffraction measurement shows that the crystalline quality of AZO films was improved with increased substrate temperature. The electrical and optical properties of the AZO films have been systematically studied via various experimental tools. The room-temperature micro-photoluminescence (µ-PL) spectra show a strong ultraviolet (UV) excitonic emission and weak deep-level emission, which indicate low structural defects in the films. A Raman shift of about 11 cm−1 is observed for the first-order longitudinal-optical (LO) phonon peak for AZO films when compared to the LO phonon peak of bulk ZnO. The Raman spectra obtained with UV resonant excitation at room temperature show multi-phonon LO modes up to third order. Optical response due to free electrons of the AZO films was characterized in the photon energy range from 0.6 to 6.5 eV by spectroscopic ellipsometry (SE). The free electron response was expressed by a simple Drude model combined with the Cauchy model are reported.  相似文献   

20.
Zinc oxide (ZnO) thin film has been epitaxially grown on (1 1 1) Mg0.4Al2.4O4 substrate by RF-magnetron sputtering. In resonant Raman scattering, higher-order longitudinal optical phonon modes were clearly observed, revealing high optical quality of the ZnO film. Optical absorption indicated a visible exciton absorption at room temperature. The near band edge emission showed a red shift due to the shrinkage of the band gap with increasing the temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号