首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Water vapor absorption cross-sections in the near-infrared region (10 500-10 800 cm−1) were measured using cavity ringdown spectroscopy. Linestrengths were measured for several absorption lines around 10 604 cm−1 (943 nm) between 500 and 850 Torr of N2 and found to be independent of pressure. Our measured linestrengths of these individual lines agree well with values from databases such as HITRAN and the ESA-WVR, which are currently used for atmospheric calculations, but the integrated strength over the entire measured spectral region is slightly larger than that contained in these databases. Water vapor pressure-broadening coefficients due to nitrogen were also estimated from these measurements. The absorption due to water vapor continuum was determined to be less than (9.2 ± 0.2) × 10−27 cm2 molecule−1 at 11 500 cm−1. This measured upper limit, though larger than the estimated values from continuum models, would not contribute significantly to the calculated radiation absorption in this wavelength region.  相似文献   

2.
Line intensities of 13C16O2 have been measured between 5851 and 6580 cm−1 using CW-cavity ring down spectroscopy (CRDS) and in the 4700-5050 and 6050-6850 cm−1 regions using Fourier transform spectroscopy. As a result of the high sensitivity (noise equivalent absorption αmin∼3×10−10 cm−1) and high dynamics allowed by CW-CRDS, accurate line intensities of 2039 transitions ranging between 1.1×10−28 and 1.3×10−23 cm−1/(molecule cm−2) were measured with an average accuracy of 4%. These transitions belong to a total of 48 bands corresponding to the ΔP=9 series of transitions. Additionally, unapodized absorption spectra of 13C-enriched samples have been recorded using a high-resolution Bruker IFS125HR Fourier transform spectrometer. Spectral resolutions of 0.004 cm−1 (maximum optical path difference (MOPD)=225 cm) and 0.007 cm−1 (MOPD=128.6 cm), and pressure×path length products in the ranges 5.2-12 and 69-450 hPa×m have been used for the lower and higher energy spectral regions, respectively. Absolute line intensities have been measured in the 2001i−00001, 3001i−00001 (i=1, 2, 3) and 00031−00001 bands. An excellent agreement was achieved for the line intensities of the 3001i−00001 (i=1, 2, 3) bands measured by both FTS and CW-CRDS. The CW-CRDS and FTS experimental intensity data together with selected intensity information from the literature have been fitted simultaneously using the effective operators approach. Two sets of effective dipole moment parameters have thus been obtained, which reproduce the observed line intensities in the 2.0 and 1.6 μm regions within experimental uncertainties.  相似文献   

3.
MIPAS (Michelson Interferometer for Passive Atmosphere Sounding) is a high spectral resolution interferometer (0.035 cm−1 unapodized) covering a very wide spectral range (from 4.16 to 16.4 μm) with high sensitivity that was successfully launched on the 1st of March 2002 on the European Envisat satellite. MIPAS has measured spectra of the Earth’s upper atmosphere in the 4.3 μm region with the highest spectral resolution so far reached in this altitude region. This high spectral resolution permitted to obtain the frequency position of ro-vibrational NO+ transitions with an unprecedented accuracy. It has been found that the spectral line positions of the NO+ (1-0) ro-vibrational band are shifted by about ∼0.15 cm−1 with respect to those listed in the HITRAN 2004 compilation. Also, spectral line positions of the NO+ (2-1) ro-vibrational band are shifted by approximately 0.05-0.1 cm−1 with respect to those listed in the HITRAN 2004 compilation. A new set of Hamiltonian constants for NO+ has been derived from MIPAS data which is suggested to be used in future HITRAN compilations.  相似文献   

4.
The room temperature absorption spectrum of formaldehyde, H2CO, from 6547 to 6804 cm−1 (1527-1470 nm) is reported with a spectral resolution of 0.001 cm−1. The spectrum was measured using cavity-enhanced absorption spectroscopy (CEAS) and absorption cross-sections were calculated after calibrating the system using known absorption lines of H2O and CO2. Several vibrational combination bands occur in this region and give rise to a congested spectrum with over 8000 lines observed. Pressure broadening coefficients in N2, O2, and H2CO are reported for an absorption line at 6780.871 cm−1, and in N2 for an absorption line at 6684.053 cm−1.  相似文献   

5.
In this paper, we describe new high-resolution measurements of the absorption spectrum of 14NH3 in the 6850-7000 cm−1 region using cavity-enhanced absorption spectroscopy (CEAS), and Fourier-transform spectroscopy (FTS) between ∼6400 and 6900 cm−1. The CEAS measurements were used to determine line positions, line intensities (cross-sections) and pressure-broadening parameters, the latter in three different bath gases. A total of 1117 NH3 lines were observed. The accuracy of the line positions is about 0.001 cm−1, and absorptions cross-sections as low as 1×10−23 cm2 molecule−1 are reported.  相似文献   

6.
Temperature-induced desorption behavior of water from methylcellulose (MC) film was investigated by a novel microscopic Fourier transform infrared (FT-IR) spectroscopy equipped with thermal analyzer (thermal FT-IR microscopic system) and thermogravimetric analysis (TGA). The result indicates that the weight loss of water from MC film was markedly correlated to the IR spectral changes of OH stretching (3000-3800 cm−1) and bending (1649 cm−1) modes of water molecules. The shift of OH stretching mode from 3461 to 3481 cm−1 was accompanied with the water loss from MC film induced by temperature effect. Two stages of water desorption from MC film were proposed: the first stage within the 35-65 °C had a dramatic IR peak shift from 3461 to 3477 cm−1 and accompanied with a largest weight loss of water from MC film, which might be mainly due to the desorption of free water with minor weakly hydrogen-bonded water; the second stage beyond 65 °C would be desorption of moderately hydrogen-bonded bound water, due to the gradual IR spectral shift from 3477 to 3481 cm−1 and a slower weight loss of water from MC film. The changes in peak area ratio of 1649 cm−1/1374 cm−1 with the temperature also confirmed the IR spectral peak shift of the OH stretching mode via the water loss from MC film. The temperature-dependent dissociation of intermolecular and intramolecular hydrogen bonds within water molecules and/or between water/MC interaction might be responsible for the desorption kinetics of water from MC film.  相似文献   

7.
Line intensities, self- and air-broadened linewidths, pressure-induced shifts, and collisional narrowing coefficients were measured from 2 ? J′ ? 32 in the P branch of the O2A-band (12 975-13110 cm−1) utilizing Galatry line profiles. Spectra were recorded using the frequency-stabilized cavity ring-down spectrometer located at NIST, Gaithersburg, MD with a spectral resolution <0.0001 cm−1 and noise-equivalent absorption coefficient of 6 × 10−8 m−1 Hz−1/2. Line intensities, obtained from calibrated gas samples for 2 ? J′ ? 32, are ∼1% lower than the values in current spectroscopic databases. At higher J (18 ? J′ ? 32), the measured air- and self- broadened half widths are up to 20% lower than the extrapolated values given in HITRAN 2004, while corresponding half-widths for 2 ? J′ ? 15 are in better agreement. Available self-broadened half widths are fitted to empirical expressions with an rms of 0.8%. We discuss the implications of our results for accurate remote sensing of surface pressure and photon path length distributions.  相似文献   

8.
We report on the consistency of water vapour line intensities in selected spectral regions between 800-12,000 cm−1 under atmospheric conditions using sun-pointing Fourier transform infrared spectroscopy. Measurements were made across a number of days at both a low and high altitude field site, sampling a relatively moist and relatively dry atmosphere. Our data suggests that across most of the 800-12,000 cm−1 spectral region water vapour line intensities in recent spectral line databases are generally consistent with what was observed. However, we find that HITRAN-2008 water vapour line intensities are systematically lower by up to 20% in the 8000-9200 cm−1 spectral interval relative to other spectral regions. This discrepancy is essentially removed when two new linelists (UCL08, a compilation of linelists and ab-initio calculations, and one based on recent laboratory measurements by Oudot et al. (2010) [10] in the 8000-9200 cm−1 spectral region) are used. This strongly suggests that the H2O line strengths in the HITRAN-2008 database are indeed underestimated in this spectral region and in need of revision. The calculated global-mean clear-sky absorption of solar radiation is increased by about 0.3 W m−2 when using either the UCL08 or Oudot line parameters in the 8000-9200 cm−1 region, instead of HITRAN-2008. We also found that the effect of isotopic fractionation of HDO is evident in the 2500-2900 cm−1 region in the observations.  相似文献   

9.
Oxygen-broadened half-widths and pressure induced frequency shifts of water vapor were measured in the (0 1 0)-(0 0 0) band between 1212 and 2136 cm−1. Over 400 observations were obtained at 0.0054 cm−1 spectral resolution using a Fourier transform spectrometer at the Kitt Peak National Observatory. The observed width coefficients ranged from 0.0057 to 0.0718 cm−1/atm and the shift coefficients fell between 0.0042 and −0.0169 cm−1/atm. Previous measurements of N2- and air-broadening of H2O by the first author over this spectral range were included in the analysis to compute air-broadening coefficients with comparisons to the observed values. The H2O+O2 measured half-widths are compared with previously measured values given in the available literature.  相似文献   

10.
Raman scattering from one-magnon excitation has been observed for the first time in epitaxial BiFeO3 thin films grown on (1 1 1) SrTiO3 substrates. The intensities and the frequency of the magnon mode at 18.9 cm−1 (M1) showed a discrepancy at the characteristic temperatures of ∼140 and 200 K and the magnon mode at 27.9 cm−1 (M2) disappeared at ∼200 K suggesting spin-reorientation (SR) transition in the epitaxial BFO film. The dc susceptibility measurement showed a large discrepancy near these two temperatures evidently elucidating the spin-reorientation transition mechanism. The partial spectral weight of the magnon modes is believed to be transferred to the lowest phonon mode appearing at 72.8 cm−1 and higher magnon mode M2 disappearing near 200 K reveal magnon-phonon coupling near to SR transition.  相似文献   

11.
The absorption spectrum of D2O vapor from 0.2 to 2.0 THz (6.7-67 cm−1) which is associated with rotational modes was measured at one atmosphere using terahertz time-domain spectroscopy (THz-TDS). The linewidth and collisional dephasing times were measured for 26 pure rotational transitions in the ground vibrational state (0 0 0). The temperature dependence of the linewidth (Δν) behaves as Δν ∼ T−3/4 and the linewidth decrease with increasing temperature is attributed to the 1/r6 force of interaction between colliding D2O molecules.  相似文献   

12.
We observed four kinds of adsorbed NO molecules on Pt(9 9 7) at 11 K using infrared reflection absorption spectroscopy (IRAS). The peaks at 1690, 1484 and 1615 cm−1 are assigned to the N-O stretching modes of the on-top site and the hollow site on the terrace and the bridge site at the step, respectively. The 1385 cm−1 peak is observed below ∼70 K. We assign the 1385 cm−1 peak to the hollow site of the (1 1 1) microfacet at the step or the lower-terrace hollow site nearest to the step. By heating, site-to-site hopping to the more stable site occurs and the relative stability of four adsorption sites can be determined.  相似文献   

13.
Very weak water vapor absorption lines have been investigated by intracavity laser absorption spectroscopy (ICLAS) in the 11 335-11 947 and 12 336-12 843 cm−1 spectral regions dominated by the ν1 + 3ν2 + ν3 and ν2 + 3ν3 bands, respectively. A detectivity on the order of αmin ∼ 10−9 cm−1 was achieved with an ICLAS spectrometer based on a Ti: Sapphire laser. It allowed detecting transitions with an intensity down to 5 × 10−28 cm/molecule which is about 10 times lower than the weakest line intensities previously detected in the considered region. A line list corresponding to 1281 transitions with intensity lower than 5 × 10−26 cm/molecule has been generated. A detailed comparison with the line lists provided by the HITRAN database and by recent investigations by Fourier transform spectroscopy associated with very long multi pass cell is presented. The rovibrational assignment performed on the basis of the ab initio calculations of Schwenke and Partridge, has allowed for determining 176 new energy levels belonging to a total of 16 vibrational states.  相似文献   

14.
Polycrystalline cadmium telluride films were successfully deposited on glass substrates by ablating a CdTe target by pulsed Nd–YAG laser. Microstructural studies indicated an increase in the average crystallite size from 15 nm to ∼50 nm with the increase in substrate temperature during deposition. The films deposited here were slightly tellurium rich. X-ray diffraction pattern indicated that the films deposited at 300 K had wurtzite structure while those deposited above 573 K were predominantly of zinc blende structure. Residual strain in the films deposited at 300 K was quite low as compared to those deposited at higher temperatures. PL spectra of all the CdTe films were dominated by a strong peak at ∼921 nm (∼1.347 eV) followed by a low intensity peak at ∼863 nm (∼1.438 eV). Characteristics Raman peaks for CdTe indicated a peak at ∼120 cm−1 followed by peaks located at ∼140 cm−1 and 160 cm−1.  相似文献   

15.
A patterned array of diamond-like carbon (DLC) was grown on anodic aluminum oxide (AAO) template by filtered cathodic arc plasma (FCAP) technique at room temperature. The diameters of patterned array of DLC were ∼150 nm, and the patterned array density was estimated to ∼109 cm−2. A broad asymmetric band ranging from 1000 cm−1 to 2000 cm−1 was detected by Raman spectrum attributed to characteristic band of DLC. The fraction of sp3 bonded carbon atoms of the patterned array of DLC was measured by X-ray photoelectron spectrum (XPS) and the ratio was about 62.4%. Field emission properties of the patterned array of DLC were investigated. A low turn-on field of 3.4 V/μm at 10 μA/cm2 with an emission area of 3.14 mm2 was achieved. The results indicated that the electrons were emitted under both the effect of enhanced field because of the geometry and the work function of the DLC sample. Based on Fowler-Nordheim plot, the values of work function for the patterned array of DLC were estimated in range of 0.38 to 1.75 from a linearity plot.  相似文献   

16.
A high resolution cavity ringdown spectrometer (CRDS) has been constructed using a 1.5 μm continuous-wave external-cavity tunable diode laser, a mode-matched near-confocal ringdown cavity, and 2 cm pulsed slit jet. Without signal averaging, the RMS noise in the absorption signal is 1.7 × 10−9 cm−1. The rotationally resolved overtone spectrum of the OH(ν1) + CH(ν3) stretch combination band of methanol between 6510 and 6550 cm−1 has been observed for J=0-8 and K=0-3 at sub-Doppler resolution. In total, 418 lines are assigned and global fits yield molecular torsion-rotation parameters for the upper state. Four K-localized perturbations are analyzed and the pattern of residuals is discussed.  相似文献   

17.
Actively mode-locked electron-beam-sustained-discharge CO laser producing a train of ∼5-15 ns (FWHM) spikes following with repetition rate 10 MHz for both single-line and multiline mode of operation in the mid-IR range of ∼5 μm was experimentally studied. Total laser pulse duration was ∼0.5 ms for both mode-locked and free-running laser. Specific output energy in multiline CO laser mode of operation was up to 20 Jl−1 Amagat−1 and the laser efficiency up to 3.5%. The active mode-locking was achieved for single-line CO laser mode of operation in spectral range 5.2-5.3 μm. This sort of radiation can be used for pumping an optical parametric amplifier for optical stochastic cooling in relativistic heavy ion collider, for laser ablation, and for studying vibrational and rotational relaxation of CO and NO molecules.  相似文献   

18.
Indium-tin oxide (ITO) films deposited on heated and non-heated glass substrates by a pulsed Nd:YAG laser at 355 nm and ∼2.5 J/cm2 were used in the fabrication of simple organic light-emitting diodes (OLEDs), ITO/(PVK + Alq3 + TPD)/Al. The ITO was deposited on heated glass substrates which possessed resistivity as low as ∼3 × 10−4 Ω cm, optical transmission as high as ∼92% and carrier concentration of about ∼5 × 1020 cm−3, were comparable to the commercial ITO. Substrate heating transformed the ITO microstructure from amorphous to polycrystalline, as revealed by the XRD spectrum. While the polycrystalline ITO produced higher OLED brightness, it was still lower than that on the commercial ITO due to surface roughness. A DLC layer of ∼1.5 nm deposited on this ITO at laser fluence of >12.5 J/cm2 improved its device brightness by suppressing the surface roughness effect.  相似文献   

19.
Two types of lasers based on hydrogen-like impurity-related transitions in bulk silicon operate at frequencies between 1 and 7 THz (wavelength range of 50-230 μm). These lasers operate under mid-infrared optical pumping of n-doped silicon crystals at low temperatures (<30 K). Dipole-allowed optical transitions between particular excited states of group-V substitutional donors are utilized in the first type of terahertz silicon lasers. These lasers have a gain ∼1-3 cm−1 above the laser thresholds (>1 kW cm−2) and provide 10 ps-1 μs pulses with a few mW output power on discrete lines. Raman-type Stokes stimulated emission in the range 4.6-5.8 THz has been observed from silicon crystals doped by antimony and phosphorus donors when optically excited by radiation from a tunable infrared free electron laser. The scattering occurs on the 1s(E)→1s(A1) donor electronic transition accompanied by an emission of the intervalley transverse acoustic g-phonon. The Stokes lasing has a peak power of a few tenths of a mW and a pulse width of a few ns. The Raman optical gain is about 7.4 cm GW−1 and the optical threshold intensity is ∼100 kW cm−2.  相似文献   

20.
Raman spectroscopy was used to study the evolution of host lattice recrystallization in high-fluence N+-implanted GaAs. A high-fluence of N+ ions (>1015 cm−2) was introduced into semi-insulating GaAs by the combinatorial implantation method. Subsequent thermal annealing at 800 °C was carried out to re-grow the implantation-induced amorphous layers. The dependence of Raman parameters on N contents was systematically observed for each recrystallized cell. The volume of the newly formed crystallites with original orientation decreases with increasing fluences, whereas that of crystallites of other orientations increases after high-fluence implantation and annealing. The correlation length L, representing the size of crystalline regions with preserved translational symmetry, was determined by fitting the LO phonon signal with spatial correlation model. For 1016 cm−2 implantation, the recrystallized layer consists of nano-meter-sized crystallites (∼30 nm). The dimension of the recrystallized crystallites decreases with increasing N+ fluences, in good agreement with the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号