首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
(Ba0.7Sr0.3)TiO3 (BST) ferroelectric thin films with perovskite crystal structure were fabricated by soft solution processing on a quartz substrate. The third-order nonlinear optical properties were investigated by using Z-scan technique. Positive nonlinear refractive index and nonlinear absorption coefficient were determined to be 4×10−7 esu and 1.2×10−6 m/w, respectively. The real part and imaginary part of third-order optical nonlinear susceptibility were calculated and the values were 6.43×10−8 and 5.14×10−8 esu, respectively. All of these results show ferroelectric BST thin film is promising for applications in nonlinear optical devices.  相似文献   

2.
Anatase phase TiO2 films have been grown on fused silica substrate by pulsed laser deposition technique at substrate temperature of 750 °C under the oxygen pressure of 5 Pa. From the transmission spectra, the optical band gap and linear refractive index of the TiO2 films were determined. The third-order optical nonlinearities of the films were measured by Z-scan method using a femtosecond laser (50 fs) at the wavelength of 800 nm. The real and imaginary parts of third-order nonlinear susceptibility χ(3) were determined to be −7.1 × 10−11esu and −4.42 × 10−12esu, respectively. The figure of merit, T, defined by T=βλ/n2, was calculated to be 0.8, which meets the requirement of all-optical switching devices. The results show that the anatase TiO2 films have great potential applications for nonlinear optical devices.  相似文献   

3.
Metal nanocluster composite glass prepared by 180 keV Cu ions into silica with dose of 1 × 1017 ions/cm2 has been studied. The microstructural properties of the nanoclusters were analysed by optical absorption spectra and transmission electron microscopy (TEM). Third-order nonlinear optical properties of the nanoclusters were measured at 1064 nm and 532 nm excitations using Z-scan technique. The nonlinear refraction index, nonlinear absorption coefficient, and the real and imaginary parts of the third-order nonlinear susceptibility were deduced. The mechanisms responsible for the nonlinear response were discussed. Absolute third-order nonlinear susceptibility χ(3) of this kind of sample was determined to be 2.1 × 10−7 esu at 532 nm and 1.2 × 10−7 esu at 1064 nm, respectively.  相似文献   

4.
The third-order nonlinear optical properties of chalcone derivatives have been studied using the single beam Z-scan technique. The dependence of χ(3) on different donor and acceptor type substituents demonstrates the electronic nonlinearity of compounds. The largest value of nonlinear refractive index, n2, measured for a high electron donor substituted molecule is −2.033 × 10−11 esu. These molecules exhibit a strong two-photon absorption and interesting optical limiting of nanosecond laser pulses at 532 nm.  相似文献   

5.
The optical nonlinearity of styryl7 dye in ethanol solution at different concentrations has been studied using pulsed Nd:YAG laser at 532 nm as the source of excitation. The optical responses were characterized by measuring the intensity dependent refractive index (n2) of the medium using the Z-scan technique. The open aperture Z-scan trace of the dye in solution displayed saturable absorption. The closed aperture Z-scan trace of the dye exhibited a negative nonlinearity. The styryl7 dye at 1 mM concentration exhibited nonlinear refractive co-efficient n2 = −1.24 × 10−8 cm2/W, nonlinear absorption coefficient β = − 3.9 × 10−4 cm/W and real and imaginary parts of third-order nonlinear optical susceptibility χ3 = 3.26 × 10−6 esu in ethanol. These results showed that the dye has potential application in nonlinear optics.  相似文献   

6.
The molecular charge complex urea picrate (UP) was synthesized and its third order nonlinear optical properties have been investigated using a single beam Z-scan technique with nanosecond laser pulses at 532 nm. Open aperture data of the compound indicates two photon absorption at this wavelength. The nonlinear refractive index n2, nonlinear absorption coefficient β, magnitude of effective third order susceptibility χ(3), the second order hyperpolarizability γh and the coupling factor ρ have been estimated. The experimentally determined values of β, n2, Re χ(3) and Im χ(3), γh and ρ of the compound UP are 2.146 cm/GW, −1.258×10−11 esu, −1.347×10−13 esu, 0.377×10−13 esu, 0.69×10−32 esu and 0.28, respectively. The compound exhibits good optical limiting at 532 nm with the limiting threshold of 80 μJ/pulse. Our studies suggest that compound UP is a potential candidate for optical device applications such as optical limiters.  相似文献   

7.
The triangular-shaped Au/ZnO nanoparticle arrays were fabricated on fused quartz substrate using nanosphere lithography. The structural characterization of the Au/ZnO nanoparticle arrays was investigated by atomic force microscopy. The absorption peak due to the surface plasmon resonance of Au particles at the wavelength of about 570 nm was observed. The nonlinear optical properties of the nanoparticle arrays were measured using the z-scan method at a wavelength of 532 nm with pulse duration of 10 ns. The real and imaginary part of third-order nonlinear optical susceptibility, Re χ(3) and Im χ(3), were determined to be 1.15 × 10−6 and −5.36 × 10−7 esu, respectively. The results show that the Au/ZnO nanoparticle arrays have great potential for future optical devices.  相似文献   

8.
We investigated the third-order nonlinear optical properties of a newly synthesized soluble copolymer containing oxadiazole and thiophene units using Z-scan and Degenerate Four Wave Mixing (DFWM) techniques. The measurements were performed at 532 nm with 7 ns pulses from a Nd:YAG laser. We found a good agreement between the values of χ(3) determined from both experiments. Z-scan results indicate a negative nonlinear refractive index, n2, whose magnitude is of the order of 10−10 esu. The copolymer exhibits strong nonlinear absorption and good optical limiting properties at 532 nm, and hence may be a potential material for optical limiting applications.  相似文献   

9.
Well-crystallized 250 nm-thick SrTiO3 thin films on fused-quartz substrate were prepared by pulsed laser deposition. The band-gap of SrTiO3 thin film by transmittance spectra is equal to 3.50 eV, larger than 3.22 eV for the bulk crystal. The nonlinear optical properties of the films were examined with picosecond pulses at 1.064 μm excitation. A large two-photon absorption (TPA) with absorption coefficient of 87.7 cm/GW was obtained, larger than 51.7 cm/GW for BaTiO3 thin films. The nonlinear refractive index n2 is equal to 5.7×10−10 esu with a negative sign, larger than 0.267×10−11 esu for bulk SrTiO3. The large TPA is attributed to intermediate energy levels introduced by the grain boundaries, and the optical limiting behaviors stemming from both TPA and negative nonlinear refraction were also discussed.  相似文献   

10.
Bismuth sulfide (Bi2S3) and antimony sulfide (Sb2S3) nanorods were synthesized by hydrothermal method. The products were characterized by UV-vis spectrophotometer, X-ray powder diffraction (XRD) and transmission electron microscope (TEM). Bi2S3 and Sb2S3 nanorods were measured by Z-scan technique to investigate the third-order nonlinear optical (NLO) properties. The result of NLO measurements shows that the Bi2S3 and Sb2S3 nanorods have the behaviors of the third-order NLO properties of both NLO absorption and NLO refraction with self-focusing effects. The third-order NLO coefficient χ(3) of the Bi2S3 and Sb2S3 nanorods are 6.25×10−11 esu and 4.55×10−11 esu, respectively. The Sb2S3 and Bi2S3 nanorods with large third-order NLO coefficient are promising materials for applications in optical devices.  相似文献   

11.
The non-resonant third-order non-linear optical properties of amorphous Ge20As25Se55 films were studied experimentally by the method of the femtosecond optical heterodyne detection of optical Kerr effect. The real and imaginary parts of complex third-order optical non-linearity could be effectively separated and their values and signs could be also determined, which were 6.6 × 10−12 and −2.4 × 10−12 esu, respectively. Amorphous Ge20As25Se55 films showed a very fast response in the range of 200 fs under ultrafast excitation. The ultrafast response and large third-order non-linearity are attributed to the ultrafast distortion of the electron orbitals surrounding the average positions of the nucleus of Ge, As and Se atoms. The high third-order susceptibility and a fast response time of amorphous Ge20As25Se55 films makes it a promising material for application in advanced techniques especially in optical switching.  相似文献   

12.
CdS nanoparticles were coated on the side wall of multiwalled carbon nanotubes (MWCNTs) by a wet chemical synthesis approach via noncovalent functionalization of MWCNTs with poly(diallyldimethylammonium chloride) (PDDA). The as-prepared material was characterized by X-ray diffraction (XRD), UV–vis absorption, fluorescence and transmission electron microscopy (TEM). The results indicated that CdS nanoparticles were uniformly coated on the surface of MWCNTs. Third-order optical nonlinearity of the as-prepared material was studied with the Z-scan technique with picosecond laser pulses at 532 nm. The Z-scan curve revealed that CdS nanoparticle-modified MWCNTs exhibited negative nonlinear refraction index and positive absorption coefficient. The real part and imaginary part of the third-order nonlinear susceptibility χ(3) were calculated to be −4.9 × 10−12 and 6.8 × 10−13 esu, respectively.  相似文献   

13.
The results of the femtosecond optical heterodyne detection of optical Kerr effect at 805 nm with the 80 fs ultrafast pulses in amorphous Ge10As40S30Se20 film is reported in this paper. The film shows an optical non-linear response of 200 fs under ultrafast 80 fs-pulse excitation, and the values of real and imaginary parts of non-linear susceptibility χ(3) were 9.0×10−12 and −4.0×10−12 esu, respectively. The large third-order non-linearity and ultrafast response are attributed to the ultrafast distortion of the electron orbits surrounding the average positions of the nucleus of Ge, As, S and Se atoms. This Ge10As40S30Se20 chalcogenide glass would be expected as a promising material for optical switching technique.  相似文献   

14.
Photophysical property and third-order optical nonlinearity of an azobenzene substituted zinc phthalocyanine (azo-ZnPc) in chloroform solution were studied by UV–Vis spectra method and a picosecond Z-scan technique at 532 nm with pulse duration of 25 ps, respectively. It was found that the azo-ZnPc shows large positive nonlinear refraction and positive nonlinear absorption, exhibiting the defocusing effect and reverse saturable absorption, respectively. The molecular second hyperpolarizability of the azo-ZnPc dyad was measured to be 3.9 × 10−30 esu. All the results suggest that the studied azo-ZnPc dyad may have potential applications in the field of nonlinear optics.  相似文献   

15.
Periodic Au nanoparticle arrays were fabricated on silica substrates using nanosphere lithography. The identical single-layer masks were prepared by self-assembly of polystyrene nanospheres with radius R = 350 nm. The structural characterization of nanosphere masks and periodic particle arrays was investigated by atomic force microscopy. The nonlinear optical properties of the Au nanoparticle arrays were determined using a single beam z-scan method at a wavelength of 532 nm with laser duration of 55 ps. The results show that periodic Au nanoparticle arrays exhibit a fast third-order nonlinear optical response with the nonlinear refractive index and nonlinear absorption coefficient being n2 = 6.09 × 10−6 cm2/kW and β = −1.87 × 10−6 m/W, respectively.  相似文献   

16.
We have investigated the third-order nonlinear optical parameters of Bischalcones embedded in DMF solution and in solid PMMA matrix, by Z-scan technique using nanosecond laser pulse trains at 532 nm. Z-scan results reveal that the Bischalcones exhibits negative nonlinear refractive index as high as 10−11 esu. The molecular two-photon absorption cross-section of Bischalcones were of the order 10−46 cm4 s/photon, which is nearly two orders of magnitude larger than that of Rhodamine 6G which is 10−48 - 10−50 cm4 s/photon. We found that, the two-photon absorption (TPA) is the dominating nonlinear process leading to nonlinear absorption in both the cases in solution and as well as in solid medium. Based on TPA process, the Bischalcones exhibit good optical power limiting of nanosecond laser pulses at the input wavelength. The nonlinear optical parameters found to increase on enhancing the strength of the electron donor groups indicating the dependence and importance of electron donor/acceptor units on third-order nonlinear optical susceptibility χ(3).  相似文献   

17.
Ultrafast third-order nonlinear optical responses of GeS2-In2S3-CsI chalcohalide glasses have been measured by using the femtosecond time-resolved optical Kerr effect (OKE) technique at a wavelength of 820 nm. The third-order nonlinear susceptibility was estimated to be as large as 5.12×10−13 esu. The full width at half maximum of the Kerr signal was 120 fs and its response was dominantly assigned to the ultrafast distortion of the electron cloud. The relationship between the structural units and the third-order nonlinear optical responses was analysed by Raman spectra. It is suggested that the covalent bonds of S-Ge or S-In constituting the tetrahedral units [GeS4/2] or [InS4−xIx], respectively, play an important role in the ultrafast third-order nonlinear optical responses of these chalcohalide glasses.  相似文献   

18.
A nickel complex of 5-(acrylamido)methyl-8-hydroxyquinoline, bis-(5-(acrylamido)methyl-8-hydroxyquinolino) nickel(II) (Ni(AAMQ)2) has been synthesized and its third-order nonlinear optical properties was investigated with respect to that of bis-(8-hydroxyquinolino) nickel(II) (NiQ2) by single beam Z-scan technique. The real parts (γR) of the molecular second-order hyperpolarizabilities were −6.0 × 10−46 and −5.5 × 10−46 m5/v2 for NiQ2 and Ni(AAMQ)2, respectively, indicative of similar nonlinear refraction both in sign and in magnitude. After substitution of an acrylamidomethyl group to the 8-hydroxyquinoline (8-HQ) ligand, the nonlinear absorption coefficient of Ni(AAMQ)2 was enhanced by more than two times. The corresponding imaginary part (γI) of the molecular second-order hyperpolarizability was 3.4 × 10−46 m5/v2 for Ni(AAMQ)2 while 1.6 × 10−46 m5/v2 for NiQ2. The increase in nonlinear absorption was attributed to the substitution effect and the enhanced transition dipole moment due to the participation of δ-donor group of CH2 in the molecular conjugation.  相似文献   

19.
Cadmium doped zinc oxide thin films have been prepared using a thermal decomposition technique. The influence of Cd as a doping agent on the structure, optical and nonlinear optical properties was carefully investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and a UV-vis spectrophotometer. A deep correlation has been found between the surface roughness and the optical properties. The roughness is found to deteriorate the nonlinear response, such that the highest nonlinear susceptibility χ(3) is obtained for the smoothest layer. The third-order nonlinear susceptibility χ(3) has been calculated using the Frumer model, and is estimated to be 3.37×10−10 esu. The dispersion of the refractive index of the prepared thin film is shown to follow the single electronic oscillator model. From the model, the values of oscillator strength (Ed), oscillator energy (Eo) and dielectric constant (ε) have been determined. The conductivity has been measured as a function of the energy of the photons, revealing marginal change at energies below 3.15 eV, while above this value there is a large increase in the conductivity. This suggests that CdZnO is a potential candidate for applications in optical devices such as optical limiter and optical switching.  相似文献   

20.
An investigation of third-order nonlinear optical characterization of newly synthesized conjugated benzodioxal derivatives has been done by using nanosecond Z-scan technique at 532 nm. The molecules demonstrate self-defocusing effect with intensity dependent refractive index (n2) of the order of 10−14 cm2/W. The measured molecular TPA cross-section is ranging from 2.47 ×10−47 cm4 s/photon to 6.00 cm4 s/photon. Their input-output curves indicate that there is a clear optical power limiting behavior with the limiting threshold in the range 125-181 μJ. The main factor to exhibit the observed nonlinearity in these molecules is the presence of charge donor and acceptor groups. The increased conjugation length increases the nonlinear refraction and increased electron density enhances the nonlinear absorption. The molecules exhibit good nonlinear optical properties, comparable to those of regular azoaromatic compounds. Therefore, the molecules investigated here are promising candidates for optical power limiting devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号