首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
本文讨论同时囚禁于单模、大失谐腔场中两个不同原子构成的系统,结论指出:只要仔细选择两不同原子的跃迁频率差、原子与腔场相互作用时间,可实现一个快速的量子相位门。这一方案不需要辅助的原子能级。  相似文献   

2.
We propose schemes to prepare atomic entangled states in a bi-mode cavity via stimulated Raman adiabatic passage (STIRAP) and fractional stimulated Raman adiabatic passage (f-STIRAP) techniques. Our scheme should be realizable in the near future because of the existence of all experimental ingredients. Our numerical simulation shows we can entangle the atoms with high fidelities by choosing proper laser pulses.  相似文献   

3.
We propose an efficient scheme to implement a multiplex-controlled phase gate with multiple photonic qubits simultaneously controlling one target photonic qubit based on circuit quantum electrodynamics (QED). For convenience, we denote this multiqubit gate as MCP gate. The gate is realized by using a two-level coupler to couple multiple cavities. The coupler here is a superconducting qubit. This scheme is simple because the gate implementation requires only one step of operation. In addition, this scheme is quite general because the two logic states of each photonic qubit can be encoded with a vacuum state and an arbitrary non-vacuum state |φ> (e.g., a Fock state, a superposition of Fock states, a cat state, or a coherent state, etc.) which is orthogonal or quasi-orthogonal to the vacuum state. The scheme has some additional advantages: because only two levels of the coupler are used, i.e., no auxiliary levels are utilized, decoherence from higher energy levels of the coupler is avoided; the gate operation time does not depend on the number of qubits; and the gate is implemented deterministically because no measurement is applied. As an example, we numerically analyze the circuit-QED based experimental feasibility of implementing a three-qubit MCP gate with photonic qubits each encoded via a vacuum state and a cat state. The scheme can be applied to accomplish the same task in a wide range of physical system, which consists of multiple microwave or optical cavities coupled to a two-level coupler such as a natural or artificial atom.  相似文献   

4.
基于腔QED技术的原子态纠缠纯化方案   总被引:2,自引:0,他引:2  
基于两能级原子与单模腔场之间的失谐相互作用,我们提出了一个有效的且能够纯化任意未知原子纠缠态的纠缠纯化方案。将量子逻辑门(Phys.Rev.Lett.74,4087(1995))和纠缠纯化(Phys.Rev.Lett.76,722(1996))的理论研究的最新进展相结合提出了一个在实验上可行的纠缠纯化物理方案。  相似文献   

5.
We propose a scheme to achieve a kind of nontrivial multipartite pair-wise controlled phase operation in a cavity QED setup. The operation implemented is of geometrical nature and is not sensitive to the thermal state of the cavity. In particular, we have managed to avoid the conventional dispersive coupling so that high speed gate operation is achieved which is very important in view of decoherence. We show that this multipartite pair-wise controlled phase operation makes the generation of two-dimensional cluster states very efficient.  相似文献   

6.
《Physics letters. A》2019,383(25):3069-3073
In this work we propose a scheme in the context of superconducting cavities to unambiguously discriminate non-orthogonal quantum field states when one of them is one of the four Bell states. The present work, which generalizes an earlier proposal [1] dealing with non-entangled states, also makes use of a single high Q cavity, a sample of three-level atoms, Ramsey zones and selective detectors, thus consisting of an oversimplification from the experimental view.  相似文献   

7.
Yong He 《Optics Communications》2010,283(7):1558-1560
We propose a scheme to generate a type of genuine four-qubit entangled states, which were firstly introduced by Yeo et al. [Y. Yeo, W. K. Chua, Phys. Rev. Lett. 96 (2006) 060502]. These states have many interesting entanglement properties and possess possible applications in quantum information processing and in fundamental tests of quantum physics. We show that such a type of 16 orthonormal basis states can be deterministically distinguished by a cavity QED system.  相似文献   

8.
This paper proposes a scheme for realization of a three-qubit Toffoli gate operation using three four-level atoms by a selective atom--field interaction in a cavity quantum electrodynamics system. In the proposed protocol, the quantum information is encoded on the stable ground states of atoms, and atomic spontaneous emission is negligible as the large atom--cavity detuning effectively suppresses the spontaneous decay of the atoms. The influence of the dissipation on fidelity and success probability of the three-qubit Toffoli gate is also discussed. The scheme can also be applied to realize an N-qubit Toffoli gate and the interaction time required does not rise with increasing the number of qubits.  相似文献   

9.
We propose a scheme for realization a quantum Controlled-NOT gate operation using two four-level atoms through a selective atom cavity interaction in cavity quantum electrodynamics system. In our protocol, the quantum information is encoded on the stable ground states of the two atoms. During the interaction between atoms and single-mode vacuum cavity-field, the atomic spontaneous emission is negligible as the large atom-cavity detuning effectively suppresses the spontaneous decay of the atoms. The influences of the dissipation and the deviation of interaction time on fidelity and corresponding success probability of the quantum Controlled-NOT gate and the experimental feasibility of our proposal are also discussed.  相似文献   

10.
A high-fidelity scheme to generate N-photon generalized binomial states (NGBSs) in a single-mode high-Q cavity is proposed. A method to construct superpositions of exact orthogonal NGBSs is also provided. It is then shown that these states, for any value of N, may be used for a realization of a controlled-NOT gate, based on the dispersive interaction between the cavity field and a control two-level atom. The possible implementation of the schemes is finally discussed.  相似文献   

11.
我们提出了一个制备多腔场薛定谔猫态的新方案.在这个方案里,我们需要一个两能级原子和几个铜的单模腔.其中,原子跃迁频率与各腔场频率是大失谐的.将原子同时注入几个腔中,原子与各腔同时发生相互作用.系统按大失谐情况下J-C模型演化.着重讨论了三腔场薛定谔猫态的制备,我们的方案可以很容易被推广到多腔场薛定谔猫态的制备.  相似文献   

12.
Atoms trapped in micro-cavities and interacting through the exchange of virtual photons can be modeled as an anisotropic Heisenberg spin-1/2 lattice. We do the quantum field theoretical study of such a system using the Abelian bosonization method followed by the renormalization group analysis. An infinite order Berezinskii-Kosterliz-Thouless transition is replaced by second order XY transition even when an infinitesimal anisotropy in exchange coupling is introduced. We predict a quantum phase transition between the photonic Coulomb blocked induce Mott insulating and photonic superfluid phases due to detuning between the cavity and laser frequency. A large detuning favors the photonic superfluid phase. We also perform the analysis of Jaynes and Cumming Hamiltonian to support the results of quantum field theoretical study.  相似文献   

13.
We demonstrate our ability to control and manipulate the optical modes in 2D Photonic Crystal Defect cavities and investigate their coupling to InGaAs self-assembled quantum dots. Our results enable us to probe the nature of individual cavity modes and directly investigate cavity QED phenomena. For the lowest mode volume cavities investigated, consisting of a single missing air hole within a hexagonal lattice, we have measured a clear Purcell enhancement of the light-matter interaction in the weak coupling regime. For QDs on-resonance with localized cavity modes this translates to a shortening of the quantum dot spontaneous emission lifetime by a factor 2 when compared to off-resonance dots.  相似文献   

14.
吴熙  陈志华  张勇  陈悦华  叶明勇  林秀敏 《中国物理 B》2011,20(6):60306-060306
Schemes are presented for realizing quantum controlled phase gate and preparing an N-qubit W-like state, which are based on the large-detuned interaction among three-state atoms, dual-mode cavity and a classical pulse. In particular, a class of W states that can be used for perfect teleportation and superdense coding is generated by only one step. Compared with the previous schemes, cavity decay is largely suppressed because the cavity is only virtually excited and always in the vacuum state and the atomic spontaneous emission is strongly restrained due to a large atom-field detuning.  相似文献   

15.
We propose a method for implementing the Grover search algorithm directly in a database containing any number of items based on multi-level systems. Compared with the searching procedure in the database with qubits encoding, our modified algorithm needs fewer iteration steps to find the marked item and uses the carriers of the information more economically. Furthermore, we illustrate how to realize our idea in cavity QED using Zeeman?s level structure of atoms. And the numerical simulation under the influence of the cavity and atom decays shows that the scheme could be achieved efficiently within current state-of-the-art technology.  相似文献   

16.
Abstract We propose a deterministic and scalable scheme to construct a two-qubit controlled-NOT (CNOT) gate and realize entanglement swapping between photonic qubits using a quantum-dot (QD) spin in a double-sided optical microcavity. The scheme is based on spin selective photon reflection from the cavity and can be achieved in a nondestructive and heralded way. We assess the feasibility of the scheme and show that the scheme can work in both the weak coupling and the strong coupling regimes. The scheme opens promising perspectives for long-distance photonic quantum communication and distributed quantum information processing.  相似文献   

17.
An effective scheme is proposed to generate the singlet state with three four-level atoms trapped in three distant cavities connected with each other by three optical fibers, respectively. After a series of appropriate atom–cavity interactions, which can be arbitrarily controlled via the selective pairing of Raman transitions and corresponding optical switches, a three-atom singlet state can be successfully generated. The influence of atomic spontaneous decay, photon leakage of cavities and optical fibers on the fidelity of the state is numerically simulated showing that the three-atom singlet state can be generated with high fidelity by choosing the experimental parameters appropriately.  相似文献   

18.
We propose a single-step implementation of a muti-target-qubit controlled phase gate with one catstate qubit (cqubit) simultaneously controlling n–1 target cqubits. The two logic states of a cqubit are represented by two orthogonal cat states of a single cavity mode. In this proposal, the gate is implemented with n microwave cavities coupled to a superconducting transmon qutrit. Because the qutrit remains in the ground state during the gate operation, decoherence caused due to the qutrit’s energy relaxation and dephasing is greatly suppressed. The gate implementation is quite simple because only a single-step operation is needed and neither classical pulse nor measurement is required. Numerical simulations demonstrate that high-fidelity realization of a controlled phase gate with one cqubit simultaneously controlling two target cqubits is feasible with present circuit QED technology. This proposal can be extended to a wide range of physical systems to realize the proposed gate, such as multiple microwave or optical cavities coupled to a natural or artificial three-level atom.  相似文献   

19.
潘长宁  杨迪武  赵学辉  方卯发 《中国物理 B》2010,19(8):80305-080305
<正>We propose a scheme to implement an unconventional geometric logic gate separately in a two-mode cavity and a multi-mode cavity assisted by a strong classical driving field.The effect of the cavity decay is included in the investigation.The numerical calculation is carried out,and the result shows that our scheme is more tolerant to cavity decay than the previous one because the time consumed for finishing the logic gate is doubly reduced.  相似文献   

20.
We present a scheme to prepare an optical “quantum switch”, a superposition of “open” and “closed” states. The scheme is based on the interaction of an Λ-type three-level atom with a single-mode of quantized cavity field and an external classical driving field, in the regime where the atom and fields are highly detuned. We show how this interaction can be used to generate coherent states of the cavity field in contrast to the usual method used in microwave cavity QED of injecting a coherent state into a cavity. A combination of switches could be used to prepare a quantum superposition of coherent field states located simultaneously in two cavities. Compared with previous proposals, our scheme is simplified due to economizes the Ramsey zone and the time required for the state generation is short.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号