首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the spontaneous emission of a single emitter close to a metallic nanoparticle, with the aim to clarify the distance dependence of the radiative and non-radiative decay rates. We derive analytical formulas based on a dipole-dipole model, and show that the non-radiative decay rate follows a R−6 dependence at short distance, where R is the distance between the emitter and the center of the nanoparticle, as in Förster’s energy transfer. The distance dependence of the radiative decay rate is more subtle. It is chiefly dominated by a R−3 dependence, a R−6 dependence being visible at plasmon resonance. The latter is a consequence of radiative damping in the effective dipole polarizability of the nanoparticle. The different distance behavior of the radiative and non-radiative decay rates implies that the apparent quantum yield always vanishes at short distance. Moreover, non-radiative decay is strongly enhanced when the emitter radiates at the plasmon-resonance frequency of the nanoparticle.  相似文献   

2.
We study cooperative emission by an ensemble of emitters, such as fluorescing molecules or semiconductor quantum dots, near a metal nanoparticle. The primary mechanism of cooperative emission is resonant energy transfer between emitters and plasmons rather than Dicke radiative coupling between emitters. The emission is dominated by three superradiant states with the same quantum yield as a single emitter, leading to a drastic reduction of ensemble radiated energy down to just thrice of that by a single emitter, the remaining energy being dissipated in the metal through subradiant states. We perform numerical calculations of system eigenstates and find that the plasmonic Dicke effect interactions affect is not impacted by the interactions between emitters or non-radiative losses in the metal.  相似文献   

3.
Inductively coupled plasma (ICP) etching of GaN with an etching depth up to 4 μm is systemically studied by varying ICP power, RF power and chamber pressure, respectively, which results in etch rates ranging from ∼370 nm/min to 900 nm/min. The surface morphology and damages of the etched surface are characterized by optical microscope, scanning electron microscope, atomic force microscopy, cathodoluminescence mapping and photoluminescence (PL) spectroscopy. Sub-micrometer-scale hexagonal pits and pillars originating from part of the structural defects within the original GaN layer are observed on the etched surface. The density of these surface features varies with etching conditions. Considerable reduction of PL band-edge emission from the etched GaN surface indicates that high-density non-radiative recombination centers are created by ICP etching. The density of these non-radiative recombination centers is found largely dependent on the degree of physical bombardments, which is a strong function of the RF power applied. Finally, a low-surface-damage etch recipe with high ICP power, low RF power, high chamber pressure is suggested.  相似文献   

4.
In this work we study the influence of plasmon excitations on the excitation dynamics within a protein complex embedding two chlorophyll molecules coupled to a gold nanosphere. Small separation between the chlorophylls and metallic nanoparticle allows us to simplify the calculations of the Förster energy transfer rate and non-radiative processes by replacing a spherical nanoparticle with a metallic surface. Our results show modifications of all relevant processes and the energy transfer pathways within the system as well as the radiative processes. Plasmon induced changes result in strong qualitative effects of the fluorescence of the studied light-harvesting complex.  相似文献   

5.
The optical properties of the low-field sites of Cr3+-doped alkali (Li, Na, K) disilicate glasses have been investigated using the single configurational coordinate model. The assumption of a Gaussian site distribution for the Cr3+ ions taking as parameter the zero-phonon energy has been considered. For alkali disilicate glasses the inhomogeneous contribution to the broadening of the bands, associated to the site distribution, is lower than the homogeneous one. The electron-lattice coupling S and the mean phonon energy ?ω0 have been obtained with results around 4 and 500 cm−1, respectively, similar to those obtained by other authors in oxide glasses. The site-resolved study of the emission and excitation spectra and the luminescence decay curves have been carried out as a function of temperature. On the one hand, there is evidence of a non-radiative de-excitation process that becomes important over 140 K. On the other hand, and related to the site dependence of the radiative and non-radiative probabilities, different results involving low values for the quantum efficiencies and blue shifts of the emission bands as temperature increases have been explained. Besides, the non-exponential luminescence decay curves have been fitted to an expression proposed by the authors, which takes into account non-coupled distributions for the radiative and non-radiative de-excitation probabilities for the range of temperature covering from 13 to 300 K. From the fits, the temperature dependence of the non-radiative de-excitation probability is obtained for each disilicate glass, the results are in good agreement with the expression obtained assuming the harmonic approximation in the single configurational coordinate model.  相似文献   

6.
Bidirectional ellipsometry has been developed as a technique for distinguishing among various scattering features near surfaces. The polarized angular dependence of three-dimensional light-scattering by the nanoparticles on thin film wafer is calculated and measured. These calculations and measurements yield angular dependence of bidirectional ellipsometric parameters for out-of-plane light-scattering. The experimental data show good agreement with theoretical predictions for different nanoparticle diameters and thin film thicknesses when bidirectional ellipsometry was employed to measure nanoparticles (60 nm, 100 nm, and 200 nm) on Si wafers with different film thicknesses of 2 nm, 5 nm, and 10 nm. Not only are the diameters of the nanoparticles determined, but also the film thicknesses can be calculated and distinguished from the measurement results. Additionally, the results indicate that improved accuracy is possible for measurements of scattering features from nanoparticles and thin films.  相似文献   

7.
The theoretical study of fluorescence rate of a single molecule close to a spherical metallic nanoparticle is presented. The dielectric function of the metallic nanoparticle and its polarizability is analyzed when the radii of the nanoparticle is rather small. Based on dipole–dipole model, the distance dependence of the excitation rate, radiation rate, nonradiation rate and quantum yield of the emitter molecule are derived out. The results show that the quantum yield is rather small at the vicinity of the metallic nanoparticle surface.  相似文献   

8.
Controlled photodeposition of silver nanoparticles (AgNP) on titania coatings using two different sources of UV light is described. Titania (anatase) thin films were prepared by the sol-gel dip-coating method on silicon wafers. AgNPs were grown on the titania surface as a result of UV illumination of titania films immersed in aqueous solutions of silver nitrate. UV xenon lamp or excimer laser, both operating at the wavelength 351 ± 5 nm, was used as illumination sources. The AFM topography of AgNP/TiO2 nanocomposites revealed that silver nanoparticles could be synthesized by both sources of illumination, however the photocatalysis carried out by UV light from xenon lamp illumination leads to larger AgNP than those synthesized using the laser beam. It was found that the increasing concentration of silver ions in the initial solution increases the number of Ag nanoparticles on the titania surface, while longer time of irradiation results the growth of larger size nanoparticles. Antibacterial tests performed on TiO2 covered by Ag nanoparticles revealed that increasing density of nanoparticles enhances the inhibition of bacterial growth. It was also found that antibacterial activity drops by only 10-15% after 6 cycles compared to the initial use.  相似文献   

9.
High-temperature silica-generating flames were probed with 266 nm plane, linearly polarized light to produce laser-induced emission spectra with prominent peaks at the blue- and red-shifted sides from the probe wavelength. The radiation induced is ascribed to silicon monoxide (SiO) present in the flame, and appears to be caused by a combination of fluorescence and near-resonance-enhanced Raman scattering. The signal contribution due to strongly depolarized radiation near the probe wavelength complicates extraction of size information based on Rayleigh- and Mie-scattering in investigations of silica nanoparticle formation and growth in flames where temperatures are above 2000 K, oxygen partial pressures are moderate and the particulate matter is in its early stages of evolution. However, the observed radiative process may have utility as the basis for temporally and spatially resolved species and temperature diagnostics.  相似文献   

10.
The aim of the present work is to compare the structural, the composition and chemical state of the surface and magnetic properties of different nanosized CuFe2O4 powders exhibiting collective Jahn-Teller effect. The samples under examination consist of edged nanosized particles (needle like) with average length 1300 ± 20 nm and diameter 300 ± 20 nm obtained after high temperature synthesis, and superparamagnetic (at room temperature) spherical particles (d = 6 ± 2 nm), obtained by soft chemistry techniques. The surface composition of the particles was investigated by X-ray photoelectron spectroscopy (XPS). Mössbauer spectroscopy (MöS), including at high magnetic field up to 5 T and 4.2 K, was used for characterization of cation distribution in the samples. The data yielded by the XPS and MöS analyses for spherical nanosized particles led us to the assumption for the existence of a Jahn-Teller effect gradient—from the B-sublattice on the surface to a compensation of the tetragonal distortion in the two sublattices in the core. The analysis of the contribution of the anisotropy energy in edged and spherical nanoparticles shows that it must be considered as an effective value reflecting the influence of the individual factors depending on the particle shape and surface.  相似文献   

11.
Steady-state and time-resolved techniques are used to study photoinduced electron and/or excitational energy transfer processes involved within a novel donor (zinc tetraphenylporphyrin)-acceptor (9-cyanoanthracene) system in a polar liquid medium (acetonitrile) at the ambient temperature (300 K). After photoexcitation of 9-cyanoanthracene, its fluorescence emission as well as lifetime are found to be quenched in presence of zinc tetraphenylporphyrin. The fluorescence quenching is ascribed to be due to the combined effect of electron transfer from zinc tetraphenylporphyrin to 9-cyanoanthracene and energy transfer (radiative as well as non-radiative) from 9-cyanoanthracene to zinc tetraphenylporphyrin. The highly exergonic values of Gibbs free energy change for both forward electron transfer reaction (−1.15 eV) and charge recombination reaction (−1.94 eV) indicate the possibilities of occurrences of these two processes in the Marcus inverted region. The fluorescence quenching rate due to photoinduced electron transfer reaction is found to be close to the diffusion-controlled limit within the present donor-acceptor system upon excitation of the acceptor molecules.  相似文献   

12.
A theory is presented for angular e — correlation for pure multipoles with allowance for higher-order effects; it is found that the angular correlation function has only a small contribution from the higher approximations.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 43–45, September, 1972.I am indebted to Borisoglebskii and Krutov for fruitful discussions.  相似文献   

13.
Corrosion (oxidation) kinetics of Al nanodisks, 262 nm in diameter and 20 nm in height, was measured in degassed Milli-Q water at 23 °C and neutral pH by quartz crystal microbalance with dissipation monitoring (QCM-D) and nanoplasmonic sensing. The former detects the changes of the resonance frequency and the damping of the oscillation of a piezoelectric quartz crystal resonator. The latter detects the changes of the localized surface plasmon resonance (LSPR) in the metallic part of the Al nanoparticle, caused both by the shrinking metallic core and the changes in the dielectric environment as the oxide grows. Highly resolved kinetic data were obtained which show different corrosion stages. The two techniques yield complementary information not obtainable with one technique alone. Two main corrosion mechanisms, namely homogeneous oxide growth and nanoparticle fragmentation and roughening, are distinguished. The time dependence of the corrosion kinetics, determined using QCM-D, is in agreement with weight gain studies of bulk Al found in literature. The nanoplasmonic sensing measurements are compared to analytical model calculations of LSPR shifts which yield an estimate for the increase of oxide thickness during homogeneous oxide growth.  相似文献   

14.
Methods of superradiance theory are employed for determining the relaxation rate of the excited state of a resonant emitter (atom, molecule, or quantum dot) near a metal nanoparticle under resonant excitation of plasmons in it, viz., modes of spatially uniform (dipole) harmonic oscillations of the electron density. Detuning from resonance and nonradiative loss suppressing radiation from the emitter near the nanoparticle surface are taken into account. The results are used to estimate the threshold conditions for generating a plasmon (“dipole”) nanolaser. It is shown that the threshold conditions of induced (laser) generation of plasmons for the emitter at a distance of 5–40 nm from an ellipsoidal nanoparticle are satisfied for relatively low emitter pumping rates (on the order of the rate of spontaneous emission of the emitter into the free space).  相似文献   

15.
Time-resolved photoluminescence (TRPL) of red mercuric iodide single crystal is measured at low temperatures and its two-photon luminescence is measured at room temperature. Sharp near band-gap luminescence is observed around 530 nm and was ascribed to radiative annihilation of free and bound excitons; the phonon replica of exciton luminescence are found between 533 and 540 nm at low temperatures. TRPL experiment reveals that near band-gap luminescence comprises fast and slow decay components and shows the different relaxation processes between free and bound exciton annihilation. Luminescence of bound excitons steeply lowers with increasing temperature and disappears about 40 K. A luminescence tail band is observed around 540 nm that is ascribed to defects in the anion sublattice. The temporal behavior of the tail band is described by rate equations very well. A broad luminescent band appears at 630 nm. The decay curves suggest that the luminescence is ascribed to the radiative recombination of donor-acceptor pairs and there are two kinds of mechanisms to control the decay. At room temperature, a luminescent band appears at the band-gap region, which shows the band-gap at room temperature is about 2.125 eV.  相似文献   

16.
A new compound with intramolecular charge transfer (ICT) property—5,6-Bis-[4-(naphthalene-1-yl-phenyl-amino)-phenyl]-pyrazine-2,3-dicarbonitrile(BNPPDC) was synthesized. The new compound was strongly fluorescent in non-polar and moderately polar solvents, as well as in thin solid film. The absorption and emission maxima shifted to longer wavelength with increasing solvent polarity. The fluorescence quantum yield also increased with increasing solvent polarity from non-polar to moderately polar solvents, then decreased with further increase of solvent polarity. This indicates both “positive” and “negative” solvatokinetic effects co-existed. Using this material as hole-transporting emitter and host emitter, we fabricated two electroluminescent (EL) devices with structures of A (ITO/BNPPDC (45 nm)/1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene (TPBI) (45 nm)/Mg:Ag (200 nm) and B (ITO/N,N′-diphenyl-N,N′-bis-(3-methylphenyl) (1,1′-diphenyl)4,4′-diamine (TPD) (50 nm)/BNPPDC (20 nm)/1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene (TPBI) (45 nm)/Mg:Ag (200 nm). The devices showed green-yellow EL emission with good efficiency and high brightness. For example, the device A exhibited a high brightness of 17400 cd/m2 at a driving voltage of 11 V and a very low turn-on voltage (2.9 V), as well as a maximum luminous efficiency 3.61 cd/A. The device B showed a similar performance with a high brightness of 12650 cd/m2 at a driving voltage of 13 V and a maximum luminous efficiency 3.62 cd/A. In addition, the EL devices using BNPPDC as a host and 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) as a dopant (configuration: ITO/TPD (60 nm)/BNPPDC:DCJTB (2%) (30 nm)/TPBI (35 nm)/Mg:Ag (200 nm)) showed a good performance with a brightness of 150 cd/m2 at 4.5 V, a maximum brightness of 12600 cd/m2 at 11.5 V, and a maximum luminous efficiency of 3.30 cd/A.  相似文献   

17.
We successfully fabricated field emitter arrays of carbon nanotube (CNT) dots of 10 μm diameter with excellent field emission properties by using photosensitive CNT paste. The CNT paste was investigated in terms of morphologies, current-voltage properties, and luminous uniformities by varying the mixing ratios of micro and nanoparticle inorganic fillers and the amount of CNTs added into the paste. The 3:1 mixing of micro and nanoparticle fillers and the addition of 5% CNTs in the paste brought about the best field emission characteristics of dot-patterned CNT field emitter arrays.  相似文献   

18.
Diffusion and desorption of platinum on the tungsten micro-crystal in the form of the W(1 1 1) oriented emitter tip has been studied using the field electron microscopy (FEM) technique. Diffusion of small dose of platinum (average thickness about 0.18 geometrical ML after spreading) on the thermally clean W emitter tip was studied at temperatures 648-742 K. Average activation energy for diffusion Ediff was found to lie between 1.16 ± 0.08 eVand 1.30 ± 0.16 eV. During annealing at the diffusion temperatures Pt-induced faceting of the emitter surface was visible in the neighbourhood of the {1 1 1} pole. The layer equilibrated in the diffusion process was stable at temperatures up to 1100 K where reduction of the high voltage at a fixed emission current, characteristic of alloying of Pt with W, was detected. Submonolayer of platinum (ΘPt = 0.18 ML) started to desorb at tip temperature ≥1780 K. The measurements of average activation energy for desorption of ‘zero coverage’ Pt (0.03 ML ≤ ΘPt ≤ 0.06 ML) from the entire W emitter surface were carried out at temperatures 1990-2170 K and yield the value of Edes = 5.19 ± 0.22 eV to 5.33 ± 0.19 eV. The results are compared with data for diffusion of individual Pt atoms and small clusters and with data for adsorption of Pt atoms on a planar W(1 1 0) surface. In discussion the atomic surface structure of the substrate, modified by the strong interaction of Pt with the W micro-crystal, is also taken into account.  相似文献   

19.
The overall performance of a large number of coreshells (Au@SiO2) on the fluorescence of molecules doped within the silica shell is studied theoretically by considering the random orientation and location of the molecules to calculate the average enhancement factor (AEF). Using Mie’s theory, the component of the intensified electric field along the dipole’s orientation at the molecular location in the presence of the coreshell, irradiated with polarized light, is calculated for analyzing the molecular excitation rate. In addition, using dyadic Green’s functions, the analytical solution of the electromagnetic field induced by an arbitrarily oriented and located electric dipole embedded in the shell is derived to simulate the radiative and non-radiative decay rates of an excited molecule, and then the apparent quantum yield of the system is obtained. Combining the two solutions, the enhancement factor (EF) is evaluated. Furthermore, AEF is calculated by averaging the individual EF over all possible orientations and positions of the molecules. Our results indicate that the AEF of Au@SiO2 is much lesser than the maximum EF, and it behaves as a low-frequency enhancer with a cutoff wavelength of 590 nm.  相似文献   

20.
We report formation of colloidal suspension of zinc oxide nanoparticles by pulsed laser ablation of a zinc metal target at room temperature in different liquid environment. We have used photoluminescence, atomic force microscopy and X-ray diffraction to characterize the nanoparticles. The sample ablated in deionized water showed the photoluminescence peak at 384 nm (3.23 eV), whereas peaks at 370 nm (3.35 eV) were observed for sample prepared in isopropanol. The use of water and isopropanol as a solvent yielded spherical nanoparticles of 14-20 nm while in acetone we found two types of particles, one spherical nanoparticles with sizes around 100 nm and another platelet-like structure of 1 μm in diameter and 40 nm in width. The absorption peak of samples prepared in deionized water and isopropanol are seen to be substantially blue shifted relative to that of the bulk zinc oxide due to the strong confinement effect. The technique offers an alternative for preparing the nanoparticles of active metal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号