首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ovchinnikova  M. Ya. 《JETP Letters》2008,88(9):620-624

Mean-field study of the stripe structures is conducted for a hole-doped Hubbard model. For bond-directed stripes, the Fermi surface consists of segments of an open surface and the boundaries of the hole pockets which appear in the diagonal region of momenta under certain conditions. Segments of the first type are due to one-dimensional bands of states localized on the domain walls. The relation of bands to the doping and temperature dependences of the Hall constant is discussed. In connection with the observation of quantum magnetic oscillations, a systematic search for the electron pockets has been carried out. It is shown that the formation of such pockets in bilayer models is quite possible.

  相似文献   

2.
CeTe3 is a layered compound where an incommensurate charge density wave (CDW) opens a large gap ( approximately 400 meV) in optimally nested regions of the Fermi surface (FS), whereas other sections with poorer nesting remain ungapped. Through angle-resolved photoemission, we identify bands backfolded according to the CDW periodicity. They define FS pockets formed by the intersection of the original FS and its CDW replica. Such pockets illustrate very directly the role of nesting in the CDW formation but they could not be detected so far in a CDW system. We address the reasons for the weak intensity of the folded bands, by comparing different foldings coexisting in CeTe3.  相似文献   

3.
We predict a new type of phase transition in a quasi-one-dimensional system of interacting electrons at high magnetic fields, the stabilization of a density wave which transforms a two-dimensional open Fermi surface into a periodic chain of large pockets with small distances between them. We show that quantum tunneling of electrons between the neighboring closed orbits enveloping these pockets transforms the electron spectrum into a set of extremely narrow energy bands and gaps that decreases the total electron energy, thus leading to a magnetic breakdown induced density wave ground state analogous to the well-known instability of the Peierls type.  相似文献   

4.
High-resolution angular resolved photoemission data reveal well-defined quasiparticle bands of unusually low weight, emerging in line with the metallic phase of Ca(3)Ru(2)O(7) below approximately 30 K . At the bulk structural phase transition temperature of 48 K, we find clear evidence for an electronic instability, gapping large parts of the underlying Fermi surface that appears to be nested. Metallic pockets are found to survive in the small, non-nested sections, constituting a low-temperature Fermi surface with 2 orders of magnitude smaller volume than in all other metallic ruthenates. The Fermi velocities and volumes of these pockets are in agreement with the results of complementary quantum oscillation measurements on the same crystal batches.  相似文献   

5.
The Fermi surface (FS) of Bi2Sr2CaCu2O8+delta (Bi2212) predicted by band theory displays Bi-related pockets around the (pi, 0) point, which have never been observed experimentally. We show that when the effects of hole doping either by substituting Pb for Bi or by adding excess O in Bi2212 are included, the Bi-O bands are lifted above the Fermi energy (E(F)) and the resulting first-principles FS is in remarkable accord with measurements. With decreasing hole doping the Bi-O bands drop below and the system self-dopes below a critical hole concentration. Computations on other Bi- as well as Tl- and Hg-based compounds indicate that lifting of the cation-derived band with hole doping is a general property of the electronic structures of the cuprates.  相似文献   

6.
The properties of Fermi surfaces and electron bands in electron-doped cuprates have been studied. The possible origins of a hole pocket in the nodal direction and a pseudogap at hot spots are discussed, including stripe phases and double bands in an antiferromagnetically correlated Fermi liquid. Within the framework of the mean field method, it is shown that both t-t′-t″-U Hubbard model solutions with a homogeneous antifer-romagnetic spin structure and those with a diagonal stripe structure can reproduce the fragmentar character of the Fermi surface. The appearance of hole pockets in various structures is related either to states in the lower Hubbard band or to states localized on domain walls. The behavior of a gap at the leading edge of the energy distribution of photoelectrons and its dependence on oxygen removal in the course of annealing are considered.  相似文献   

7.
The de Haas-van Alphen effect has been used to study the extremal areas and effective cyclotron masses on all five sheets of the Fermi surface of rhodium for the magnetic field in a (110)-plane. The measured extremal areas are in good agreement with relativistic-augmented-plane-wave calculations. The resulting deviations correspond to energy shifts of the calculated bands not exceeding 4 mRy. Several extremal orbits on the fifth band Γ-centered electron sheet have been observed. The mass enhancement determined from the ratio between the calculated and measured effective cyclotron masses is found to vary substantially over the different sheets of the Fermi surface. A rather isotropie factor of 1.40 is obtained for the sixth band Γ-centered electron sheet. For the third and fourth band hole pockets we obtained enhancement factors in the region 0.9–1.4.  相似文献   

8.
We observe apparent hole pockets in the Fermi surfaces of single-layer Bi-based cuprate superconductors from angle-resolved photoemission. From detailed low-energy electron diffraction measurements and an analysis of the angle-resolved photoemission polarization dependence, we show that these pockets are not intrinsic but arise from multiple overlapping superstructure replicas of the main and shadow bands. We further demonstrate that the hole pockets reported recently from angle-resolved photoemission [Meng et al., Nature (London) 462, 335 (2009)] have a similar structural origin and are inconsistent with an intrinsic hole pocket associated with the electronic structure of a doped CuO? plane.  相似文献   

9.
顾强强  万思源  杨欢  闻海虎 《物理学报》2018,67(20):207401-207401
铁基高温超导体自2008年发现以来,对其超导电性的研究一直是一个热门的课题.扫描隧道显微镜能够在原子尺度进行表面形貌和隧道谱测量,从微观角度研究电子态密度的信息,是研究超导的重要谱学手段.近年来,在铁基超导电性方面,扫描隧道显微镜实验已经积累了一些有价值的结果,本文进行了总结介绍.铁基超导体是多带多超导能隙的超导体,不同材料的费米面结构有很大的变化.扫描隧道显微镜证明,同时有电子和空穴费米面最佳掺杂的铁基样品超导能隙结构是无节点并带有能隙符号变化的s±波.而进一步的实验发现在没有空穴费米面的FeSe基超导体中也存在能隙符号的相反,对统一铁基超导体的配对对称性提供了重要实验证据.此外,扫描隧道显微镜在研究铁基超导体的电子向列相、浅能带特性、可能的拓扑特性方面,提供了重要的实验数据.本文对上述相关内容进行了总结,并做了相应分析和讨论.  相似文献   

10.
We present an overview of the electronic properties of iron arsenic high temperature superconductors with emphasis on low energy band dispersion, Fermi surface and superconducting gap. ARPES data is compared with full-potential linearized plane wave (FLAPW) calculations. We focus on single layer NdFeAsO0.9F0.1 (R1111) and two layer Ba1?xKxFe2As2 (B122) compounds. We find general similarities between experimental data and calculations in terms of character of Fermi surface pockets, and overall band dispersion. We also find a number of differences in details of the shape and size of the Fermi surfaces as well as the exact energy location of the bands, which indicate that magnetic interaction and ordering significantly affects the electronic properties of these materials. The Fermi surface consists of several hole pockets centered at Γ and electron pockets located in zone corners. The size and shape of the Fermi surface changes significantly with doping. Emergence of a coherent peak below the critical temperature Tc and diminished spectral weight at the chemical potential above Tc closely resembles the spectral characteristics of the cuprates, however the nodeless superconducting gap clearly excludes the possibility of d-wave order parameter. Instead it points to s-wave or extended s-wave symmetry of the order parameter.  相似文献   

11.
We show that a metallic surface state is formed on Tl/Ge(111)-(1 × 1). The surface state forms electron pockets around K of the surface Brillouin zone. A first-principles calculation reveals that the electron pockets are composed of a single branch of a spin-split surface-state band. The spin quantization axis is along the surface normal and inverts according to the time-reversal symmetry. Since this spin-split branch is the unique metallic band on this surface, the surface conductivity should be governed by this spin-split branch, suggesting a possible spin-polarized electric current.  相似文献   

12.
Doping evolution of the Fermi surface topology of Na(x)CoO(2) is studied systematically. Both local density approximation (LDA) and local spin density approximation (LSDA) predict a large Fermi surface as well as small hole pockets for doping levels x approximately 0.5. In contrast, the hole pockets are completely absent for all doping levels within LSDA+U. More importantly, we find no violation of Luttinger's rule in this system. The measured Fermi surface of Na(0.7)CoO(2) can be explained by its half-metallic behavior and agrees with our LSDA+U calculations.  相似文献   

13.
We investigate the Mott transition in weakly coupled one-dimensional (1D) fermionic chains. Using a generalization of dynamical mean field theory, we show that the Mott gap is suppressed at some critical hopping t{ perpendicular}{c2}. The transition from the 1D insulator to a 2D metal proceeds through an intermediate phase where the Fermi surface is broken into electron and hole pockets. The quasiparticle spectral weight is strongly anisotropic along the Fermi surface, both in the intermediate and metallic phases. We argue that such pockets would look like "arcs" in photoemission experiments.  相似文献   

14.
The Fermi surface topologies of underdoped samples of the high-T(c) superconductor Bi2Sr2CaCu2O(8+δ) have been measured with angle resolved photoemission. By examining thermally excited states above the Fermi level, we show that the observed Fermi surfaces in the pseudogap phase are actually components of fully enclosed hole pockets. The spectral weight of these pockets is vanishingly small at the magnetic zone boundary, creating the illusion of Fermi "arcs." The area of the pockets as measured in this study is consistent with the doping level, and hence carrier density, of the samples measured. Furthermore, the shape and area of the pockets is well reproduced by phenomenological models of the pseudogap phase as a spin liquid.  相似文献   

15.
We report the observation of Shubnikov-de Haas oscillations in the underdoped cuprate superconductor YBa2Cu4O8 (Y124). For fields aligned along the c axis, the frequency of the oscillations is 660+/-30 T, which corresponds to approximately 2.4% of the total area of the first Brillouin zone. The effective mass of the quasiparticles on this orbit is measured to be 2.7+/-0.3 times the free electron mass. Both the frequency and mass are comparable to those recently observed for ortho-II YBa2Cu3O6.5 (Y123-II). We show that although small Fermi surface pockets may be expected from band-structure calculations in Y123-II, no such pockets are predicted for Y124. Our results therefore imply that these small pockets are a generic feature of the copper oxide plane in underdoped cuprates.  相似文献   

16.
The electronic structure of CaFe2As2, a parent compound of iron-based superconductors, is studied with high-resolution angle-resolved photoemission spectroscopy. The electronic structure of CaFe2As2 in the paramagnetic state is consistent with that of density-functional theory calculations. We show that the electronic structure of this compound is significantly reconstructed when entering the spin density wave state. We could resolve two hole-like pockets and four electron-like pockets around the (0, 0) point, and one electron-like pocket surrounded with a pair of electron- and hole-like pockets around the (π, π) point in the spin density wave state. Therefore, the complicated Fermi surface topology and electronic structure near Fermi surface of CaFe2As2 illustrate that there exists unconventional electronic reconstruction in the spin density wave state, which cannot be explained by the band folding and Fermi surface nesting pictures.  相似文献   

17.
We examine the spin-triplet superconducting state of even parity mediated by ferromagnetic Hund's coupling between electrons in two almost degenerate orbital bands. This state may be realized in the recently discovered LaFeAsO(1-x)F(x). It is robust against orbital-independent disorder. The splitting of the orbital degeneracy suppresses superconductivity and leads to an anisotropic spectrum in the Bogoliubov quasiparticle. The former predicts a strong pressure dependence of T(c) and the latter predicts Fermi pockets, which may be tested in angle resolved photoemission spectra.  相似文献   

18.
We show that the Fermi surface (FS) in the antiferromagnetic phase of BaFe(2)As(2) is composed of one hole and two electron pockets, all of which are three dimensional and closed, in sharp contrast to the FS observed by angle-resolved photoemission spectroscopy. Considerations on the carrier compensation and Sommerfeld coefficient rule out existence of unobserved FS pockets of significant sizes. A standard band structure calculation reasonably accounts for the observed FS, despite the overestimated ordered moment. The mass enhancement, the ratio of the effective mass to the band mass, is 2-3.  相似文献   

19.
The t(2g) quasiparticle spectra of Na(0.3)CoO(2) are calculated within the dynamical mean field theory. It is shown that as a result of dynamical Coulomb correlations charge is transferred from the nearly filled e(g(')) subbands to the a(1g) band, thereby reducing orbital polarization among Co t(2g) states. Dynamical correlations therefore stabilize the small e(g(')) Fermi surface pockets, in contrast to angle-resolved photoemission data, which do not reveal these pockets.  相似文献   

20.
A quartz resonator operated in solution is a sensitive tool to probe surface reconstructions on metal electrodes subjected to an electrochemical oxidiation/reduction cycle. The analysis of mass changes obtained on gold electrodes in neutral and alkaline solutions demonstrates that about 20% of the observed change is due to oxygen incorporation into the metal surface with the remainder arising from liquid confined in pockets of the roughened, oxidized surface. The roughening was confirmed by SEM micrographs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号