首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zero forcing and power domination are iterative processes on graphs where an initial set of vertices are observed, and additional vertices become observed based on some rules. In both cases, the goal is to eventually observe the entire graph using the fewest number of initial vertices. The concept of k-power domination was introduced by Chang et al. (2012) as a generalization of power domination and standard graph domination. Independently, k-forcing was defined by Amos et al. (2015) to generalize zero forcing. In this paper, we combine the study of k-forcing and k-power domination, providing a new approach to analyze both processes. We give a relationship between the k-forcing and the k-power domination numbers of a graph that bounds one in terms of the other. We also obtain results using the contraction of subgraphs that allow the parallel computation of k-forcing and k-power dominating sets.  相似文献   

2.
3.
The complexity of a module is the rate of growth of the minimal projective resolution of the module while the z-complexity is the rate of growth of the number of indecomposable summands at each step in the resolution. Let g=osp(k|2) (k>2) be the type II orthosymplectic Lie superalgebra of types B or D. In this paper, we compute the complexity and the z-complexity of the simple finite-dimensional g-supermodules. We then give these complexities certain geometric interpretations using support and associated varieties.  相似文献   

4.
Tutte’s 3-flow conjecture states that every 4-edge-connected graph admits a nowhere-zero 3-flow. In this paper, we characterize all graphs with independence number at most 4 that admit a nowhere-zero 3-flow. The characterization of 3-flow verifies Tutte’s 3-flow conjecture for graphs with independence number at most 4 and with order at least 21. In addition, we prove that every odd-5-edge-connected graph with independence number at most 3 admits a nowhere-zero 3-flow. To obtain these results, we introduce a new reduction method to handle odd wheels.  相似文献   

5.
6.
In this paper, we employed lattice model to describe the three internally vertex-disjoint paths that span the vertex set of the generalized Petersen graph P(n,3). We showed that the P(n,3) is 3-spanning connected for odd n. Based on the lattice model, five amalgamated and one extension mechanisms are introduced to recursively establish the 3-spanning connectivity of the P(n,3). In each amalgamated mechanism, a particular lattice trail was amalgamated with the lattice trails that was dismembered, transferred, or extended from parts of the lattice trails for P(n?6,3), where a lattice tail is a trail in the lattice model that represents a path in P(n,3).  相似文献   

7.
We provide a cohomological interpretation of the zeroth stable A1-homotopy group of a smooth curve over an infinite perfect field. We show that this group is isomorphic to the first Nisnevich (or Zariski) cohomology group of a certain sheaf closely related to the first Milnor–Witt K-theory sheaf. This cohomology group can be computed using an explicit Gersten-type complex. We show that if the base field is algebraically closed then the zeroth stable A1-homotopy group of a smooth curve coincides with the zeroth Suslin homology group that was identified by Suslin and Voevodsky with a relative Picard group. As a consequence we reobtain a version of Suslin's rigidity theorem.  相似文献   

8.
Let q be a prime power and n be a positive integer. A subspace partition of V=Fqn, the vector space of dimension n over Fq, is a collection Π of subspaces of V such that each nonzero vector of V is contained in exactly one subspace in Π; the multiset of dimensions of subspaces in Π is then called a Gaussian partition of V. We say that Πcontains a direct sum if there exist subspaces W1,,WkΠ such that W1?Wk=V. In this paper, we study the problem of classifying the subspace partitions that contain a direct sum. In particular, given integers a1 and a2 with n>a1>a21, our main theorem shows that if Π is a subspace partition of Fqn with mi subspaces of dimension ai for i=1,2, then Π contains a direct sum when a1x1+a2x2=n has a solution (x1,x2) for some integers x1,x20 and m2 belongs to the union I of two natural intervals. The lower bound of I captures all subspace partitions with dimensions in {a1,a2} that are currently known to exist. Moreover, we show the existence of infinite classes of subspace partitions without a direct sum when m2?I or when the condition on the existence of a nonnegative integral solution (x1,x2) is not satisfied. We further conjecture that this theorem can be extended to any number of distinct dimensions, where the number of subspaces in each dimension has appropriate bounds. These results offer further evidence of the natural combinatorial relationship between Gaussian and integer partitions (when q1) as well as subspace and set partitions.  相似文献   

9.
10.
The graph grabbing game is a two-player game on weighted connected graphs where all weights are non-negative. Two players, Alice and Bob, alternately remove a non-cut vertex from the graph (i.e., the resulting graph is still connected) and get the weight assigned to the vertex, where the starting player is Alice. Each player’s aim is to maximize his/her outcome when all vertices have been taken, and Alice wins the game if she gathered at least half of the total weight. Seacrest and Seacrest (2017) proved that Alice has a winning strategy for every weighted tree with even order, and conjectured that the same statement holds for every weighted connected bipartite graph with even order. In this paper, we prove that Alice wins the game on a type of a connected bipartite graph with even order called a Km,n-tree.  相似文献   

11.
12.
Ju Zhou 《Discrete Mathematics》2018,341(4):1021-1031
A graph G is induced matching extendable or IM-extendable if every induced matching of G is contained in a perfect matching of G. In 1998, Yuan proved that a connected IM-extendable graph on 2n vertices has at least 3n?2 edges, and that the only IM-extendable graph with 2n vertices and 3n?2 edges is T×K2 , where T is an arbitrary tree on n vertices. In 2005, Zhou and Yuan proved that the only IM-extendable graph with 2n6 vertices and 3n?1 edges is T×K2+e, where T is an arbitrary tree on n vertices and e is an edge connecting two vertices that lie in different copies of T and have distance 3 between them in T×K2. In this paper, we introduced the definition of Q-joint graph and characterized the connected IM-extendable graphs with 2n4 vertices and 3n edges.  相似文献   

13.
The purpose of this paper is to characterize and interrelate various degrees of stability and semipositivity for real square matrices having nonpositive off-diagonal entries. The major classes considered are the sets of diagonally stable, stable, and semipositive matrices, denoted respectively by A, L, and S. The conditions defining these classes are weakened, and the resulting classes are examined. Their relationship to the classes of real matrices P and P0, whose off-diagonal entries are nonpositive and whose principal minors are respectively all positive and all nonnegative, is also included.  相似文献   

14.
For a martingale M starting at x with final variance σ2, and an interval (a,b), let Δ=b?aσ be the normalized length of the interval and let δ=|x?a|σ be the normalized distance from the initial point to the lower endpoint of the interval. The expected number of upcrossings of (a,b) by M is at most 1+δ2?δ2Δ if Δ21+δ2 and at most 11+(Δ+δ)2 otherwise. Both bounds are sharp, attained by Standard Brownian Motion stopped at appropriate stopping times. Both bounds also attain the Doob upper bound on the expected number of upcrossings of (a,b) for submartingales with the corresponding final distribution. Each of these two bounds is at most σ2(b?a), with equality in the first bound for δ=0. The upper bound σ2 on the length covered by M during upcrossings of an interval restricts the possible variability of a martingale in terms of its final variance. This is in the same spirit as the Dubins & Schwarz sharp upper bound σ on the expected maximum of M above x, the Dubins & Schwarz sharp upper bound σ2 on the expected maximal distance of M from x, and the Dubins, Gilat & Meilijson sharp upper bound σ3 on the expected diameter of M.  相似文献   

15.
We prove that a Lie p-algebra of cohomological dimension one is one-dimensional, and discuss related questions.  相似文献   

16.
A graph G is minimally t-tough if the toughness of G is t and the deletion of any edge from G decreases the toughness. Kriesell conjectured that for every minimally 1-tough graph the minimum degree δ(G)=2. We show that in every minimally 1-tough graph δ(G)n3+1. We also prove that every minimally 1-tough, claw-free graph is a cycle. On the other hand, we show that for every positive rational number t any graph can be embedded as an induced subgraph into a minimally t-tough graph.  相似文献   

17.
Consider a branching random walk, where the underlying branching mechanism is governed by a Galton–Watson process and the migration of particles by a simple random walk in Zd. Denote by Zn(z) the number of particles of generation n located at site zZd. We give the second order asymptotic expansion for Zn(z). The higher order expansion can be derived by using our method here. As a by-product, we give the second order expansion for a simple random walk on Zd, which is used in the proof of the main theorem and is of independent interest.  相似文献   

18.
Given a nonnegative integer d and a positive integer k, a graph G is said to be (k,d)-colorable if the vertices of G can be colored with k colors such that every vertex has at most d neighbors receiving the same color as itself. Let ? be the family of planar graphs without 3-cycles adjacent to cycles of length 3 or 5. This paper proves that everyone in ? is (3,1)-colorable. This is the best possible in the sense that there are members in ? which are not (3,0)-colorable.  相似文献   

19.
The vertices of Kneser graph K(n,k) are the subsets of {1,2,,n} of cardinality k, two vertices are adjacent if and only if they are disjoint. The square G2 of a graph G is defined on the vertex set of G with two vertices adjacent if their distance in G is at most 2. Z. Füredi, in 2002, proposed the problem of determining the chromatic number of the square of the Kneser graph. The first non-trivial problem arises when n=2k+1. It is believed that χ(K2(2k+1,k))=2k+c where c is a constant, and yet the problem remains open. The best known upper bounds are by Kim and Park: 8k3+203 for 1k3 (Kim and Park, 2014) and 32k15+32 for k7 (Kim and Park, 2016). In this paper, we develop a new approach to this coloring problem by employing graph homomorphisms, cartesian products of graphs, and linear congruences integrated with combinatorial arguments. These lead to χ(K2(2k+1,k))5k2+c, where c is a constant in {52,92,5,6}, depending on k2.  相似文献   

20.
The purpose of this note is to show a new series of examples of homogeneous ideals I in K[x,y,z,w] for which the containment I(3)?I2 fails. These ideals are supported on certain arrangements of lines in P3, which resemble Fermat configurations of points in P2, see [14]. All examples exhibiting the failure of the containment I(3)?I2 constructed so far have been supported on points or cones over configurations of points. Apart from providing new counterexamples, these ideals seem quite interesting on their own.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号