首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The balance between electrostatic and non-electrostatic enthalpic contributions to the free energy of solvation of a series of neutral solutes in water and n-octanol is examined by means of continuum solvation calculations based on the Miertus–Scrocco–Tomasi (MST) method. The experimental data indicate that the solvation enthalpy of hydrocarbons is very similar in water and n-octanol, and that the enthalpic contribution measured for polar compounds is larger in water than in n-octanol. According to MST calculations, the different magnitude of the solvation enthalpy found for polar compounds in the two solvents can be largely attributed to the electrostatic contribution. Moreover, the results point out that there is close resemblance between the non-electrostatic components for both hydrocarbons and polar compounds in the two solvents. Finally, the results show the power of current continuum models like MST to dissect the total free energy of solvation in entropic and enthalpic contributions and suggest that new refinements of continuum solvation models should include not only the fitting to solvation free energies, but also their enthalpic components.  相似文献   

2.
We derive a consistent approach for predicting the solvation free energies of charged solutes in the presence of implicit and explicit solvents. We find that some published methodologies make systematic errors in the computed free energies because of the incorrect accounting of the standard state corrections for water molecules or water clusters present in the thermodynamic cycle. This problem can be avoided by using the same standard state for each species involved in the reaction under consideration. We analyze two different thermodynamic cycles for calculating the solvation free energies of ionic solutes: (1) the cluster cycle with an n water cluster as a reagent and (2) the monomer cycle with n distinct water molecules as reagents. The use of the cluster cycle gives solvation free energies that are in excellent agreement with the experimental values obtained from studies of ion-water clusters. The mean absolute errors are 0.8 kcal/mol for H(+) and 2.0 kcal/mol for Cu(2+). Conversely, calculations using the monomer cycle lead to mean absolute errors that are >10 kcal/mol for H(+) and >30 kcal/mol for Cu(2+). The presence of hydrogen-bonded clusters of similar size on the left- and right-hand sides of the reaction cycle results in the cancellation of the systematic errors in the calculated free energies. Using the cluster cycle with 1 solvation shell leads to errors of 5 kcal/mol for H(+) (6 waters) and 27 kcal/mol for Cu(2+) (6 waters), whereas using 2 solvation shells leads to accuracies of 2 kcal/mol for Cu(2+) (18 waters) and 1 kcal/mol for H(+) (10 waters).  相似文献   

3.
This study reports the parametrization of the HF/6‐31G(d) version of the MST continuum model for n‐octanol. Following our previous studies related to the MST parametrization for water, chloroform, and carbon tetrachloride, a detailed exploration of the definition of the solute/solvent interface has been performed. To this end, we have exploited the results obtained from free energy calculations coupled to Monte Carlo simulations, and those derived from the QM/MM analysis of solvent‐induced dipoles for selected solutes. The atomic hardness parameters have been determined by fitting to the experimental free energies of solvation in octanol. The final MST model is able to reproduce the experimental free energy of solvation for 62 compounds and the octanol/water partition coefficient (log Pow) for 75 compounds with a root‐mean‐square deviation of 0.6 kcal/mol and 0.4 (in units of log P), respectively. The model has been further verified by calculating the octanol/water partition coefficient for a set of 27 drugs, which were not considered in the parametrization set. A good agreement is found between predicted and experimental values of log Po/w, as noted in a root‐mean‐square deviation of 0.75 units of log P. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1180–1193, 2001  相似文献   

4.
A neutral, nonpolar monolithic capillary column was evaluated as a hydrophobic stationary phase in pressurized CEC system for neutral, acidic and basic solutes. The monolith was prepared by in situ copolymerization of octadecyl methacrylate and ethylene dimethacrylate in a binary porogenic solvent consisting of cyclohexanol/1,4‐butanediol. EOF in this hydrophobic monolithic column was poor; even the pH value of the mobile phase was high. Because of the absence of fixed charges, the monolithic capillary column was free of electrostatic interactions with charged solutes. Separations of neutral solutes were based on the hydrophobic mechanism with the pressure as the driving force. The acidic and basic solutes were separated under pressurized CEC mode with the pressure and electrophoretic mobility as the driving force. The separation selectivity of charged solutes were based on their differences in electrophoretic mobility and hydrophobic interaction with the stationary phase, and no obvious peak tailing for basic analytes was observed. Effects of the mobile phase compositions on the retention of acidic compounds were also investigated. Under optimized conditions, high plate counts reaching 82 000 plates/m for neutral compounds, 134 000 plates/m for acid compounds and 150 000 plates/m for basic compounds were readily obtained.  相似文献   

5.
Nanofiltration (NF) membranes possess the intermediate molecular weight cut-off between reverse osmosis membranes and ultrafiltration membranes, and also have rejection to inorganic salts. So one can assume that NF membranes have charged pore structure. We have developed the electrostatic and steric-hindrance (ES) model from the steric-hindrance pore (SHP) model and the Teorell-Meyer-Sievers (TMS) model (Wang et al., J. Chem. Eng. Japan, 28 (1995) 372) to predict the transport performance of charged solutes through NF membranes based on their charged pore structure. In this article, by doing the permeation experiments of aqueous solutions of neutral solutes and sodium chloride, the structural parameters (the pore radius and the ratio of membrane porosity to membrane thickness) and the charge density of NF membranes (Desal-S, NF-40, NTR7450 and G-20) were estimated on the basis of SHP model and the TMS model, respectively. Then, we selected an aqueous solution of different tracer charged solutes (sodium benzenesulfonate, sodium naphthalenesulfonate and sodium tetraphenyl-borate) and a supporting salt (sodium chloride) to verify the ES model. The prediction based on the ES model was in good agreement with the experimental results.  相似文献   

6.
A novel silica monolithic stationary phase functionalized with 3-(2-aminoethylamino)propyl ligands for pressurized CEC has been presented. The monolithic capillary columns were prepared by a sol-gel process in 75 microm id fused-silica capillaries and followed by a chemical modification. The diamino groups on the surface of the stationary phase are meant to generate the chromatographic surface and a substantial anodic EOF as well as to provide electrostatic interaction sites for charged solutes. The electrochromatographic characterization and column performance were evaluated by a variety of neutral and charged solutes. It was observed that the anodic EOF for the diamine-bonded monolith was greatly affected by the reaction time with 3-(2-aminoethylamino)propyltrimethoxysilane and the PEG amount in the sol-gel reaction mixture in addition to the mobile phase conditions. The monolithic stationary phase exhibited hydrophilic interaction chromatographic behavior toward neutral solutes. Good separations of various solutes including phenols, nucleic acid bases, nucleosides and nucleotides were achieved under different experimental conditions. Fast and efficient separations were obtained with high plate counts reaching more than 130,000 plates/m.  相似文献   

7.
We present a new quantum mechanical model to introduce Pauli repulsion interaction between a molecular solute and the surrounding solvent in the framework of the Polarizable Continuum Model. The new expression is derived in a way to allow naturally for a position-dependent solvent density. This development makes it possible to employ the derived expression for the calculation of molecular properties at the interface between two different dielectrics. The new formulation has been tested on the azide anion (N3-) for which we have calculated the solvation energy, the dipole moment, and the static polarizability at the interface as a function of the ion position. The calculations have been carried out for different ion-surface orientations, and the results have also been compared with the parallel electrostatic-only solvation model.  相似文献   

8.
The two one-dimensional models introduced in Part I are used to study the thermodynamics of solvation of inert solutes in water. It is shown that the anomalously large Gibbs energy of solvation of inert solutes in water, on one hand, and the large negative entropy of solvation, on the other hand, arise from different molecular sources. While the primitive model can give rise to a large positive solvation Gibbs energy, it fails to show large negative entropy and enthalpy of solvation. It is remarkable that the primitive cluster model can show both the large positive Gibbs energy and enthalpy of solvation.  相似文献   

9.
10.
An overview on the use of mixtures of neutral and charged cyclodextrins as chiral additives for the enantioseparation of drugs by capillary electrophoresis is presented. These so called dual cyclodextrin systems can often provide unique selectivities. A brief theoretical background illustrating the influence of the chiral discrimination ability and the effective mobility of the two cyclodextrins on the overall selectivity of the enantiomeric separation is given. Typical examples of applications in the pharmaceutical field, based on the simultaneous use of a charged (cationic or anionic) and neutral cyclodextrins, are described.  相似文献   

11.
Thermodynamic and structural properties of the counterion atmosphere surrounding B-DNA are calculated by Monte Carlo simulation in a spatially inhomogeneous, but piecewise uniform, dielectric continuum cell model - the "barbarous" model. A boundary element formulation is implemented to study the sensitivity of these properties with respect to perturbations in the location of discontinuous dielectric boundaries relative to fixed and mobile charges. High concentrations are considered corresponding to the liquid crystalline hexagonally ordered phase of DNA. Primitive model results are verified against other simulation reports and a comparison of barbarous model predictions with experimental data is discussed. The internal energy, osmotic coefficient, radial distributions and the population ratio of counterions in the geometrically resolved major and minor grooves are all found to strongly depend on the dielectric boundary position. This suggests that a self-consistent development of the model should consider a free surface problem where the boundary is not specified a priori.  相似文献   

12.
13.
An efficient version of the polarizable continuum model for solvation has been implemented in the Gaussian density-functional-based code called deMon. Solvation free energies of representative compounds have been calculated as a preliminary test. The hydration effects on the reaction profile of the Cl+CH3Cl→ClCH3+Cl reaction and the thermodynamics of the Menschutkin reaction have also been investigated. Finally, the conformational behavior of the 1,2-diazene cis–trans isomerization process in water was examined. Comparisons between the results obtained and the available experimental data and previous theoretical computations have been made. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 290–299, 1998  相似文献   

14.
The nature and extent of mixed-mode retention mechanisms evident for three structurally related, agglomerated, particle-based stationary phases were evaluated. These three agglomerated phases were Thermo Fisher ScientificIon PacAS11-HC – strong anion exchange, Thermo Fisher Scientific IonPac CS10 – strong cation-exchange PS-DVB, and the Thermo Fisher Scientific Acclaim Trinity P1silica-based substrate, which is commercially marketed as a mixed-mode stationary phase. All studied phases can exhibit zwitterionic and hydrophobic properties, which contribute to the retention of charged organic analytes. A systematic approach was devised to investigate the relative ion-exchange capacities and hydrophobicities for each of the three phases, together with the effect of eluent pH upon selectivity, using a specifically selected range of anionic, cationic and neutral aromatic compounds. Investigation of the strong anion-exchange column and the Trinity P1 mixed-mode substrate, in relation to ion-exchange capacity and pH effects, demonstrated similar retention behaviour for both the anionic and ampholytic solutes, as expected from the structurally related phases. Further evaluation revealed that the ion-exchange selectivity of the mixed-mode phase exhibited properties similar to that of the strong anion-exchange column, with secondary cation-exchange selectivity, albeit with medium to high anion-exchange and cation-exchange capacities, allowing selective retention for each of the anionic, cationic and ampholytic solutes. Observed mixed-mode retention upon the examined phases was found to be a sum of anion- and cation-exchange interactions, secondary ion-exchange and hydrophobic interactions, with possible additional hydrogen bonding. Hydrophobic evaluation of the three phases revealed log P values of 0.38–0.48, suggesting low to medium hydrophobicity. These stationary phases were also benchmarked against traditional reversed-phase substrates namely, octadecylsilica YMC-Pac Pro C18 and neutral μPS-DVB resin IonPac NS1-5u, yielding log P values of 0.57 and 0.52, respectively.  相似文献   

15.
16.
Several alkyl benzenes are separated by pressurized flow-driven capillary electrochromatography using a temperature-controlled capillary column packed with octadecyl siloxane-modified silica gel, and the effect of applied voltage on the retention is investigated. The van't Hoff plot shows good linearity at the column temperature between 305 and 330 K under applications from -6 to +6 kV. The applied voltage causes a relatively large variation in the enthalpy and the entropy of transfer of the solute from the mobile phase to the stationary phase (> 20%). However, the direction of variation in the enthalpy is almost opposite to that in the entropy, both of which might compensate each other. Therefore, the retention factor is not significantly varied (< 4%) by the application of voltage.  相似文献   

17.
A parametrization of the polarizable continuum model (PCM) is presented having the experimental hydration free energies of 215 neutral molecules as target. The cavitation and dispersion contributions were based on the Tu?on-Silla-Pascual-Ahuir (Tu?on; et al. Chem. Phys. Lett. 1993, 203, 289) and Floris-Tomasi (Floris, F.; Tomasi, J. J. Comput. Chem. 1989, 10, 616) expressions, respectively. Both the polar and nonpolar contributions were evaluated on the same solvent-excluding molecular surface that used unscaled Bondi atomic radii. The parametrization was provided for the HF, Xalpha, LSDA, B3LYP, and mPW1PW91 methods at the 6-31G(d) basis set, and the results are in fair agreement with the experimental data. For the sake of comparison, the PCM(UAHF) and our parametrization (PCM2), both at HF level, have produced DeltaG(PCM(UAHF)) = aDeltaGexp (a = 1.02 +/- 0.02, r = 0.945, sd = 0.987, Ftest = 1778) and DeltaG(PCM2) = aDeltaGexp (a = 0.95 +/- 0.02, r = 0.952, sd = 0.843, Ftest = 2070), respectively. The mean absolute deviations from experimental data were 0.67 and 0.68 kcal/mol for PCM(UAHF) and PCM2, respectively.  相似文献   

18.
A semiempirical model for carbon clusters modeling is presented, along with structural and dynamical applications. The model is a tight-binding scheme with additional one- and two-center distance-dependent electrostatic interactions treated self-consistently. This approach, which explicitly accounts for charge relaxation, allows us to treat neutral and (multi-) charged clusters not only at equilibrium but also in dissociative regions. The equilibrium properties, geometries, harmonic spectra, and relative stabilities of the stable isomers of neutral and singly charged clusters in the range n=1-14, for C(20) and C(60), are found to reproduce the results of ab initio calculations. The model is also shown to be successful in describing the stability and fragmentation energies of dictations in the range n=2-10 and allows the determination of their Coulomb barriers, as examplified for the smallest sizes (C(2) (2+),C(3) (2+),C(4) (2+)). We also present time-dependent mean-field and linear response optical spectra for the C(8) and C(60) clusters and discuss their relevance with respect to existing calculations.  相似文献   

19.
Solubilities of L-cystine, L-tyrosine, and L-leucine in aqueous NaCl media at 298.15 K have been studied. Indispensable and related solvent parameters such as molar mass, molar volume, etc., were also determined. The results are used to evaluate the standard transfer Gibbs free energy, cavity forming enthalpy of transfer, cavity forming transfer Gibbs free energy and dipole-dipole interaction effects during the course of solvation. Various weak interactions involving solute–solvent or solvent–solvent molecules were characterized in order to find their role on the solvation of these amino acids.  相似文献   

20.
The enthalpy of solution of trans-cyclohexyl-1,4-diamine and cis-cyclohexyl-1,2-diamine in water was determined by calorimetry. The enthalpy of hydration was determined from this quantity and from the enthalpy of sublimation/vaporization presented in another paper by the authors. Considering the solvation process resulting from cavity creation in the solvent and variation of solute conformation transfer steps, the enthalpy corresponding to solute–solvent interaction was estimated. The entropies of solvation and interaction were calculated from the values given for the enthalpies in the present paper and those available for the Gibbs free energies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号