首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This research investigates the locus of solubilization of two significant compounds, the polycyclic aromatic hydrocarbons (PAHs) naphthalene and phenanthrene from a synthesized organic liquid phase comprised of the two PAHs and hexadecane in micelles of five polyoxyethylene non-ionic surfactants. The locus was inferred by the examination of the nuclear magnetic resonance (NMR) spectra. In this method, the ring current shifts on the 1H resonance of the surfactant chain protons are monitored. 1H NMR spectra were recorded for the five surfactant solutions in absence and presence of PAHs. The presence of the PAH induced the 1H to shift along the surfactant chain. The proton shift changes were obtained by comparing the NMR spectra for the pure surfactant solutions with those for surfactant solution contacted with various non-aqueous phase liquids. It was demonstrated that the distribution of PAHs between the shell and the core of the micelles changed with the concentration of PAHs in the micelles and in the NAPL phase. The 1H NMR analysis identified the presence of both PAHs in the shell region of the non-ionic micelles. This is an important observation because it is commonly assumed that in multi-component systems the solutes with relatively greater hydrophobicity are partitioned only in core of the non-ionic micelles. The results demonstrated the potential of the 1H NMR analysis for the identification of the locus of solubilization of PAHs in micelles of non-ionic surfactant.  相似文献   

2.
Upon addition of permanganate to a solution of tryptophan (Trp), yellow-brown color species appears within the time of mixing of tryptophan in absence and presence of cetyltrimethylammonium bromide (CTAB), which was stable for some days. Spectroscopic and kinetic evidences suggest the formation of water-soluble colloidal MnO2 as the most stable reduction product of MnO4. Carbon dioxide and ammonia are not formed as the oxidation products. Carbon–carbon double bond of indole moiety of Trp is responsible for the fast reduction of permanganate. Cetyltrimethylammonium bromide catalyses the permanganate oxidation of Trp with a rate enhancement of ca. 200-fold. Sub- and postmicellar catalytic effect of CTAB ascribed to the association/incorporation/solubilization of both reactants (MnO4 and Trp) with the CTAB aggregates and into the Stern layer of cationic micelles. Quantitative kinetic analysis of the rate constant–[CTAB] data has been performed on the basis of modified pseudo-phase model of the micelles. A comparison was made of the oxidation rates of different amino acids by permanganate. The order of the effectiveness was as follows: tryptophan  tyrosine  phenylalanine.  相似文献   

3.
A series of new phosphoramides with general formula RP(O)X2, where R = amino/p‐methylphenoxy and X = amine, were synthesized and characterized by 1H, 13C, 31P nuclear magnetic resonance (NMR), and infrared (IR) spectroscopy and elemental analysis. The 31P{1H} NMR spectra show that among compounds 7–9 containing 2‐, 3‐, and 4‐aminopyridinyl moieties, respectively, the shielding order of the P atom decreases as 7 > 9 > 8 . Also, the structure of compound 7 was determined by X‐ray crystallography. In this structure, repeated noncentrosymmetric dimers are formed by two strong intermolecular N(1)‐H(1N)…N(2) and N(3)‐H(3N)…O(1) hydrogen bonds. Taking into account weak intermolecular C(17)‐H(17C)…N(4), C(17)‐H(17E)…N(4), C(2)‐H(2A)…O(2), and also weak aromatic C—H…C interactions, a three‐dimensional polymeric chain is created in the crystalline network. The density functional theory calculations at B3LYP, B3PW91, and M06 levels using the 6–31+G** basis set were in good agreement with the X‐ray crystallography data.  相似文献   

4.
Solubilization of caffeic acid into the aqueous solution of cationic cetyltrimethlyammonium bromide (CTAB) has been studied by using differential spectroscopic and conductivity methods. The solubility of caffeic acid increases with increasing the CTAB concentrations. The solubilization constant of caffeic acid into CTAB (KX = 1.8 × 105), standard free energy (ΔG0P = ?30.0 kJ/mol), and relative solubility (St/S0 = 53.5) were estimated at room temperature from UV–visible data. The critical micellar concentration (CMC) of CTAB decreases linearly with caffeic acid concentration due to the presence of hydrophobic benzene moiety. The interaction of caffeic acid with CTAB has also been discussed. The solubilized caffeic acid was used as a reducing agent for the preparation of silver nanoparticles (AgNPs). The as-prepared AgNPs were used as an activator of persulphate. The generated reactive oxygen species (OH?) and reactive sulphur species SO4-?) were responsible for the degradation of xylenol orange dye in water.  相似文献   

5.
The interaction between N, N′-bis(dimethyldodecyl)-1,6-hexanediammoniumdibromide (G12-6-12) and cetyltrimethylammonium bromide (CTAB) in D20 aqueous medium has been investigated by NMR at 298 K. The G12-6-12 and CTAB are about 0.773 and measured critical micelle concentration (cmc) of 0.668 mmol/L, respectively. The cmc^* (cmc of mixture) values are less than CMC^* (cmc of ideally mixed solution) in the mixed system, and the interaction parameter βM〈0 at different molar fractions α of G12-6-12 in the mixed systems, but just when α≤0.3, cmc^* values are much smaller than CMC^*, and βM satisfies the relation of |βM|〉|ln(cmc1/cmc2)| (cmcl: cmc of pure G12-6-12 and cmc2: cmc Of pure CTAB). The results indicate that there exists synergism between G12-6-12 and CTAB, and they can form mixed micelles, which is further proven by 2D NOESY and self-diffusion coefficient D experiments. There are intermolecular cross peaks between G12-6-12 and CTAB in 2D NOESY, and the radius of micelles in mixed solution is bigger than that in G12-6-12 pure solution in D experiments, indicating there are mixed micelles. However, when α〉0.3, we find that cmc^*≈CMC^*, βM≈0, obviously, the two surfactants are almost ideal mixing fitting the pseudo-phase separation model and regular solution theory.  相似文献   

6.
Interfacial tension (γ), conductivity (κ), nuclear magnetic resonance (NMR), and fluorescence measurements have been carried out to study the mixed interfacial and micellar behavior of cationic surfactants cetyltributylphosphonium bromide (CTBB) and the cetyltrimethylammonium bromide (CTAB). From the γ versus log C s plots, the values of critical micellar concentration (cmc) and various interfacial parameters were computed. From κ measurements, the equivalent conductivities of the monomers (Λ mon), the micelles (Λ mic) states and the degree of counterion dissociation (δ) have been evaluated. The cmc values have been analyzed in the context of the pseudophase separation model and regular solution theory. The interaction parameters, βm and βσ, in the mixed micelle as well as in the mixed monolayer, respectively, also have been computed. The self‐diffusion coefficients for the micelles have been evaluated by using NMR spectroscopy. From the fluorescence quenching method, the mean micellar aggregation number (N agg) of the pure and mixed micelles has been obtained from the slope of the ratio of fluorescence intensities in the absence and in the presence of quencher (ln (I 1,0/I 1) versus [Q] plots. It was found that the incorporation of CTBB into the mixed micelle decreases the N agg. The microviscosity of the fluorescence probe Rhodamine (RB) was monitored by using fluorescence polarization measurements. The values of fluorescence anisotropies (r) indicate that the penetration of CTBB monomer into CTAB micelles produced less rigid mixed micelles.  相似文献   

7.
Controlled release of cephanone from hexadecyltrimethylammonium bromide (CTAB) micelles and CTAB/n-C5H11OH/H2O microemulsions was studied. The results showed that the release rate of cephanone was reduced in CTAB micelles and CTAB/n-C5H11OH/H2O microemulsions, because of the solubilization of cephanone in micelles and microemulsions. The release of cephanone from CTAB micelles and CTAB/n-C5H11OH/H2O microemulsions was characterized by Fickian diffusion and non-Fickian diffusion.  相似文献   

8.
Intermolecular coordination effects on the 31P NMR spectra of molecular complexes of N-vinylimidazole and 1-allyl-3,5-dimethylpyrazole with phosphorus pentachloride were studied by theoretical and experimental methods. The formation of intermolecular dative N→P bond was shown to be accompanied by upfield shift of the phosphorus resonance signal by more than 200 ppm. Appreciable contribution of relativistic effects to 31P NMR chemical shifts was revealed; the spin-orbital contribution to 31P shielding constant was estimated at >210 ppm. Consideration of solvent effect was found to be crucial while studying steric structure of molecular complexes of azoles with phosphorus pentachloride and intermolecular coordination effects on 31P NMR chemical shifts.  相似文献   

9.
Phase behavior of ternary systems containing 3‐dodecyloxy‐2‐hydroxypropyl trimethyl ammonium bromide (R12TAB), benzyl alcohol and water have been studied at 25±0.1°C. Ternary phase diagram of the systems shows a clear, isotropic, and low‐viscous region, a L phase, two liquid crystalline phases (lamella and hexagonal liquid crystal), and a coexisted phase of the liquid crystalline and micelles. 2H nuclear magnetic resonance (2H NMR) technology and polarizing‐light microscope were employed to confirm the symmetry structure of the liquid crystals and the boundaries for the different phases. In L phase, three types of different micelle regions (reverse micelles, normal micelles, and bicontinuous structures zones) were confirmed by means of the electric conductivity and the proton nuclear magnetic resonance spectroscopy (1H NMR) measurements. The microcosmic structures of the micelle were investigated, and the solubilizing position of benzyl alcohol were located according to the chemical shift of protons.  相似文献   

10.
Solubilization of pepsin by bis(2-ethylhexyl) sodium sulfosuccinate (AOT) and cetyltrimethylammonium bromide (CTAB) reverse micelles has been studied at 20C. Isooctane, cyclohexane and hexane were used as solvents, and n-butanol, amyl alcohol and hexanol were used as cosurfactants for CTAB. AOT concentrations were varied from 50 to 500 mM and pepsin concentrations were varied from 2 to 10 mg-mL–1. At 250 mM, AOT can solubilize more than 85% of the Pepsin in each solvent. The effect of aqueous-phase pH on the solubilization of Pepsin has been studied from pH 1 to 8. The maximum solubilization of pepsin was observed below the isoelectric point (pI = 1.5) of the protein at pH 1.0 with 300 mM of AOT. The CTAB solutions were prepared by dissolving CTAB in isooctane with varying concentrations (0–100% v/v) of n-butanol, amyl alcohol or hexanol cosurfactants. It was found that 5% cosurfactant with 100 mM of CTAB was sufficient to solubilize more than 90% of the total pepsin. Pepsin solubilization by AOT reverse micelles increases with increasing polarizability and molar volume of the solvents.  相似文献   

11.
The isotropic 129Xe nuclear magnetic resonance (NMR) chemical shift (CS) in Xe@C60 dissolved in liquid benzene was calculated by piecewise approximation to faithfully simulate the experimental conditions and to evaluate the role of different physical factors influencing the 129Xe NMR CS. The 129Xe shielding constant was obtained by averaging the 129Xe nuclear magnetic shieldings calculated for snapshots obtained from the molecular dynamics trajectory of the Xe@C60 system embedded in a periodic box of benzene molecules. Relativistic corrections were added at the Breit–Pauli perturbation theory (BPPT) level, included the solvent, and were dynamically averaged. It is demonstrated that the contribution of internal dynamics of the Xe@C60 system represents about 8% of the total nonrelativistic NMR CS, whereas the effects of dynamical solvent add another 8%. The dynamically averaged relativistic effects contribute by 9% to the total calculated 129Xe NMR CS. The final theoretical value of 172.7 ppm corresponds well to the experimental 129Xe CS of 179.2 ppm and lies within the estimated errors of the model. The presented computational protocol serves as a prototype for calculations of 129Xe NMR parameters in different Xe atom guest–host systems. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
Rate constants for the hydrolysis reaction of phosphate (paraoxon) and thiophosphate (parathion, fenitrothion) esters by oximate (pyridinealdoxime 2‐PyOx and 4‐PyOx) and its functionalized pyridinium surfactants 4‐(hydroxyimino) methyl)‐1‐alkylpyridinium bromide ions (alkyl = CnH2n+1, n = 10, 12, 14, 16) have been measured kinetically at pH 9.5 and 27°C in micellar media of cationic surfactants cetyltrimethylammonium bromide (CTAB) and cetylpyridinium bromide (CPB). Acid dissociation constant, pKa, of oximes has also been determined by spectrophotometric, kinetic, and potentiometric methods. The rate acceleration effects of cationic micelles have been explored. Cationic micelles of the pyridinium head group (CPB) showed a large catalytic effect than the ammonium head group (CTAB). The effects of pH, oximate concentration, and surfactants have been discussed.  相似文献   

13.
The effect of cationic micelles of cetyltrimethylammonium bromide (CTAB) on the interaction of dipeptide glycyl-tyrosine (Gly-Tyr) with ninhydrin under varying conditions has been studied spectrophotometrically at 70 °C and pH 5.0. The reaction followed first- and fractional-order kinetics with respect to [Gly-Tyr] and [ninhydrin], respectively. Increase in total concentration of CTAB from 0 to 70 × 10−3 mol dm−3 resulted in an increase in the pseudo-first-order rate constant (kψ) by a factor of ca. 3. Quantitative kinetic analysis of kψ  [CTAB] data was performed on the basis of pseudo-phase model of the micelles (proposed by Menger and Portnoy and developed by Bunton) and Piszkiewicz model. A possible mechanism has been proposed and the kinetic data have been used to evaluate the micellar binding constants KS (268 mol−1 dm3 for Gly-Tyr) and KN (64 mol−1 dm3 for ninhydrin).  相似文献   

14.
In the present study, we investigate the self-association and mixed micellization of an anionic surfactant, sodium dodecyl sulfate (SDS), and a cationic surfactant, cetyltrimethylammonium bromide (CTAB). The critical micelle concentration (CMC) of SDS, CTAB, and mixed (SDS + CTAB) surfactants was measured by electrical conductivity, dye solubilization, and surface tension measurements. The surface properties (viz., C20 (the surfactant concentration required to reduce the surface tension by 20 mN/m), ΠCMC (the surface pressure at the CMC), Γmax (maximum surface excess concentration at the air/water interface), and Amin (the minimum area per surfactant molecule at the air/water interface)) of SDS, CTAB, and (SDS + CTAB) micellar/mixed micellar systems were evaluated. The thermodynamic parameters of the micellar (SDS and CTAB), and mixed micellar (SDS + CTAB) systems were evaluated.

A schematic representation of micelles and mixed micelles.  相似文献   

15.
The solubility of BF3OEt2 in hydrogenated gasoline was improved greatly by means of premixing BF3OEt2 with C3H17OH in nickel catalyst system, so that the effeciency of fluorine in the system was increased markedly. It is confirmed that there was a intermolecular hydrogen bond between alcohol and BF3OEt2 molecules by using 1H NMR, which was a vital factor to lead the solubilization of BF3OEt2 in hydrogenated gasoline. Otherwise, the caculation formula of the chemical shift ofproton in hydroxy, 1H = xipi,was suggested in hydrogen bond system.  相似文献   

16.
A free-catalyst microwave-assisted cyanation of brominated Tröger's base derivatives ( 2a - f ) is reported. The procedure is simple, efficient, and clean affording the nitrile compounds ( 3a - e, I ) in very good yields. Complete assignment of 1H and 13C chemical shifts of 2a - f, I and 3a - d, I was achieved using gradient selected 1D nuclear magnetic resonance (NMR) techniques (1D zTOCSY, PSYCHE, DPFGSE NOE, and DEPT), homonuclear 2D NMR techniques (gCOSY and zTOCSY), and heteronuclear 2D NMR techniques (gHSQCAD/or pure-shift gHSQCAD, gHMBCAD, bsHSQCNOESY, and gHSQCAD-TOCSY) with adiabatic pulses. Determination of the long-range proton–proton coupling constants nJHH (n = 4, 5, 6) was accomplished by simultaneous irradiation of two protons at appropriate power levels. In turn, determined coupling constants were tested by an iterative simulation program by calculating the 1H NMR spectrum and comparing it to the experimental spectrum. The excitation-sculptured indirect-detection experiment (EXSIDE) and 1H-15N CIGARAD-HMBC (constant time inverse-detection gradient accordion rescaled heteronuclear multiple bond correlation) were applied for determination of long-range carbon–proton coupling constants nJCH (n = 2, 3, and 4) and for assignment of 15N chemical shift at natural abundance, respectively. DFT/B3LYP optimization studies were performed in order to determine the geometry of 2c using 6-31G(d,p), 6-311G(d,p), and 6–311 + G(d,p) basis sets. For calculation of 1H and 13C chemical shifts, nJHH (n = 2, 3, 4, 5, and 6), and nJCH (n = 1, 2, 3, and 4) coupling constants, the GIAO method was employed at the B3LYP/6-31G(d,p), B3LYP/6-31+G(d,p), B3LYP/6-311+G(d,p), B3LYP/6-311++G(2d,2p), B3LYP/cc-pVTZ), and B3LYP/aug-cc-pVTZ) levels of theory. For the first time, a stereochemical dependence magnitude of the long-range nJHH (n = 4, 5, and 6) and nJCH (n = 1, 2, 3, 4, and 5) have been found in bromo-substituted analogues of Tröger's bases.  相似文献   

17.
The structure of freshly prepared Al(OPh)3, its decomposition product, the hydrolyzed products and their structural evolution were investigated employing 27Al MAS NMR spectroscopy, PXRD, TGA/DTA/DSC/FTIR techniques. In the 27Al MAS NMR spectrum of the aluminium phenoxide, three signals with the chemical shift at 3.78, 21 and 45 ppm were observed. The chemical shift at 3.78 and 45 ppm revealed the presence of four and sixfold coordinated aluminum. The signal at 21 ppm corresponded to fivefold coordinated aluminium. When the aluminium phenoxide was directly decomposed in air at 600 °C, it resulted in amorphous product as evidenced from the PXRD pattern. The observed signals with chemical shifts at 10.1, 42, 73.6 ppm in the 27Al MAS NMR spectrum indicated the presence of 6, 5 and 4 coordination for the aluminium atoms suggesting disordered transitional γ-alumina to be the product. The hydrolysis studies of Al(OPh)3 with excess of water at 70 °C yielded bohemite (γ-AlOOH). The alumina obtained after dehydration at 600 °C was X-ray amorphous. The dehydrated product at 600 °C showed the presence of four and six coordinated aluminium atoms in the 27Al MAS NMR spectrum confirming it to be ordered γ-Al2O3. Crystalline γ-Al2O3 was obtained on further heating at 800 °C.  相似文献   

18.
The micellar solubilization mechanism of curcumin by mixed surfactants of SDS and Brij35 was investigated at the molecular scale by NMR spectroscopy. Through the investigation of the micelle formation process, types and structures of mixed micelles and solubilization sites, the intrinsic factors influencing the solubilization capacity were revealed. For systems with αSDS = 0.5 and 0.2, the obtained molar solubilization ratios (MSRs) are consistent with the MSRideal values. However, for αSDS = 0.8, the solubilization capacity of curcumin is weakened compared to the MSRideal. Furthermore, only one single mixed SDS/Brij35 micelles are formed for αSDS = 0.5 and 0.2. However, for αSDS = 0.8, there are separate SDS-rich and Brij35-rich mixed micelles formed. In addition, NOESY spectra show that the interaction patterns of SDS and Brij35 in mixed micelles are similar for three systems, as are the solubilization sites of curcumin. Therefore, for αSDS = 0.5 and 0.2 with single mixed micelles formed, the solubility of curcumin depends only on the mixed micelle composition, which is almost equal to the surfactant molar ratio. Although curcumin is solubilized in both separate micelles at αSDS = 0.8, a less stable micelle structure may be responsible for the low solubility. This study provides new insights into the investigation and application of mixed micelle solubilization.  相似文献   

19.
The effects of inorganic salts on micellization and solubilization of prednisolone in aqueous solution of poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) triblock copolymer (Pluronic P85) were studied. The effect of inorganic salts on decrease in the cloud point and the critical micelle concentration (cmc) of Pluronic P85 was the order of Na2HPO4 > NaH2PO4 > NaCl > NaBr. Moreover, it was found that Pluronic P85 forms two kinds of micelles: monomolecular micelles and polymolecular micelles. The polymolecular micelle increased with increasing amount of added inorganic salts. Moreover, solubilization behavior is explained from the standpoint of salting out for prednisolone and association characteristics of Pluronic P85.  相似文献   

20.
The effect of phenol on the structure of micellar solution of a cationic surfactant, cetyltrimethylammonium bromide (CTAB) was investigated using viscosity, dynamic light scattering (DLS), small angle neutron scattering (SANS) and nuclear magnetic resonance (NMR) techniques. The relative viscosity and apparent hydrodynamic diameters of the micelles in CTAB solution increase initially and then decrease with addition of phenol. SANS studies indicate a prolate ellipsoidal structure of the micelles. The axial ratio of the prolate ellipsoidal micelles increases and then decreases with addition of phenol, consistently with DLS and viscosity measurements. NMR studies confirm the solubilization of phenol to the palisade layer and growth of the micelles at high concentration of phenol as revealed from the broadening of peaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号