首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of CuII salts with phenanthroline and oxalate (ox) or oxamate (oxm) gives [Cu(phen)(ox)(H2O)] · H2O or [Cu(phen)(oxm)(H2O)] · H2O complexes while direct treatment of CuII salts with oxalate or oxamate gives [NH4]2[Cu(ox)2] and [Cu(oxm)2(H2O)2] respectively. The X-ray structures of one example of each system, aquo-oxamato-phenanthroline-copper(II)-dihydrate and the polymeric ammonium-bis(aquo)-tetraoxalato-dicopper(II)-dihydrate, are reported.  相似文献   

2.
The Schiff N‐allylamine‐4‐(ethylenediamine‐5‐methylsalicylidene)‐1,8‐naphthalimide (H2L) and its copper(II) complex, [Cu(HL)2] · 0.5DMF, were synthesized and characterized. The crystal structure of the CuII complex reveals a slightly distorted square‐planar arrangement provided by two N and O donors from two deprotonated ligands. In addition, the DNA‐binding properties of the ligand and CuII complex were investigated by fluorescence spectra, electronic absorption, and viscosity measurements. The experimental studies of the DNA‐binding properties indicated that the ligand and CuII complex reacted with DNA via intercalation binding mode, and binding affinity for DNA takes the order: ligand > CuII complex. The antioxidant assay in vitro suggested that both exhibited potential intensely antioxidant properties, and the ligand is more effective than its CuII complex.  相似文献   

3.
In the title compound, [Cu(C15H20N2O4)]n, the copper(II) coordination is square planar. The anionic l ‐tyrosyl‐l ‐leucinate ligand binds in an N,N′,O‐tridentate mode to one CuII cation on one side and in an O‐monodentate mode to a second CuII cation on the other side, thus defining –Cu—O—C—O—Cu′– chains which run along the a axis. These chains are held together by a strong hydrogen bond involving the hydroxy H atom.  相似文献   

4.
A series of polyacylhydrazones derived from condensing diacetyl with oxalic, malonic, succinic, glutaric and adipic dihydrazides was prepared, characterized and reacted with copper(II) and nickel(II) acetate to give metallopolymers of general formula [Cu2(L)(AcO)2(OH)(H2O)2] · yH2O n , [Cu(L)(AcO)(HO)(H2O)] · yH2O n , [Ni2(L)(AcO)2-(HO)2] · yH2O n and [Ni(L)(AcO)(HO)] · yH2O n , where L refers to the neutral dihydrazone unit. Magnetic susceptibility measurements in the 4.2–300 K range indicate significant antiferromagnetic coupling between the CuII centers in the metallopolymers, which may indicate the presence of two polymer chains crosslinked by bis--acetatocopper(II) bridges. Based on i.r., spectral and magnetic measurements, tentative structures of the CuII and NiII metallopolymers have been proposed. The dihydrazone units in these polymers are coordinated to the metal(II) via the azomethine nitrogen(s) whereas the amide group remains uncoordinated. Each CuII is penta-coordinated in a distorted square pyramidal environment and is neutralized by one bridged acetate and a hydroxide ion, while the fifth coordination site is occupied by a water molecule. In the nickel(II) metallopolymers the metal ions are in a tetrahedral environment and are coordinated to azomethine nitrogen, two bridged acetate oxygens and to the hydroxide ion.  相似文献   

5.
The reaction of CuCl2 · 2H2O and CdCl2 with di-(2-picolyl)sulfide (dps) leads to the formation of mononuclear copper(II) and binuclear cadmium(II) complexes, [Cu(dps)Cl2] · H2O (1) and [(dps)(Cl)CdII(μ-Cl)2CdII(Cl)(dps)] (2). The copper atom in (1) is coordinated to one sulfur and two nitrogen atoms from the dps ligand and two chlorides in a distorted square-pyramidal environment. Complex (2) has two distorted octahedra sharing the basal edge that contain the bridging chloro ligands, each of which resides at a center of inversion. Cyclic voltammetric data show that (1) undergoes two reversible one-electron waves corresponding to CuII/CuIII and CuII/CuI processes. However, cyclic voltammetry of (2) gives two irreversible reduced waves.  相似文献   

6.
The title racemic complex, bis[μ‐N‐(2‐oxidobenzylidene)‐d ,l ‐glutamato(2−)]bis[(isoquinoline)copper(II)] ethanol disolvate, [Cu2(C12H11NO5)2(C9H7N)2]·2C2H6O, adopts a square‐pyramidal CuII coordination mode with a tridentate N‐salicylideneglutamato Schiff base dianion and an isoquinoline ligand bound in the basal plane. The apex of the pyramid is occupied by a phenolic O atom from the adjacent chelate molecule at an apical distance of 2.487 (3) Å, building a dimer located on the crystallographic inversion center. The Cu...Cu spacing within the dimers is 3.3264 (12) Å. The ethanol solvent molecules are hydrogen bonded to the dimeric complex molecules, forming infinite chains in the a direction. The biological activity of the title complex has been studied.  相似文献   

7.
Mononuclear copper(II) and trinuclear cobalt(II) complexes, namely [Cu(L1)]2 · CH2Cl2 and [{Co(L2)(EtOH)}2Co(H2O)] · EtOH {H2L1 = 4,6‐dichloro‐6′‐methyoxy‐2,2′‐[1,1′‐(ethylenedioxydinitrilo)dimethylidyne]diphenol and H3L2 = 6‐ethyoxy‐6′‐hydroxy‐2,2′‐[1,1′‐(ethylenedioxydinitrilo)dimethylidyne]diphenol}, were synthesized and characterized by elemental analyses, IR and UV/Vis spectroscopy, and single‐crystal X‐ray diffraction. In the CuII complex, the CuII atom is four‐coordinate, with a N2O2 coordination sphere, and has a slightly distorted square‐planar arrangement. Interestingly, the obtained trinuclear CoII complex is different from the common reported 2:3 (L:CoII) salamo‐type CoII complexes. Infinite 2D layer supramolecular structures are formed via abundant intermolecular hydrogen bonding and π ··· π stacking interactions in the CuII and CoII complexes.  相似文献   

8.
Three mononuclear copper(II) complexes of copper nitrate with 2, 6‐bis(pyrazol‐1‐yl)pyridine ( bPzPy ) and 2, 6‐bis(3′,5′‐dimethylpyrazol‐1‐yl)pyridine ( bdmPzPy ), [Cu(bPzPy)(NO3)2] ( 1 ), [Cu(bPzPy)(H2O)(NO3)2] ( 2 ) and [Cu(bdmPzPy)(NO3)2] ( 3 ) were synthesized by the reaction of copper nitrate with the ligand in ethanol solution. The complexes have been characterized through analytical, spectroscopic and EPR measurements. Single crystal X‐ray structure analysis of complexes 1 and 2 revealed a five‐coordinate copper atom in 1 , whereas 2 contains a six‐coordinate (4+2) CuII ion with molecular units acting as supramolecular nodes. These neutral nodes are connected through O–H ··· O(nitrate) hydrogen bonds to give couples of parallel linear strips assembled in 1D‐chains in a zipper‐like motif.  相似文献   

9.
Two new copper(II) compounds with imino nitroxide radicals [Cu(IM‐MeImz)2 · (SCN)] 0.5[Cu(SCN)4] ( 1 ) and [Cu(IM‐MeImz)2 · (SCN)]ClO4 · H2O ( 2 ) (IM‐meImz = 2‐(5‐methylimidazol‐4‐yl)‐4,4,5,5‐tetramethyl‐2‐imidazoline‐1‐oxyl) have been synthesized and characterized structurally and magnetically. X‐ray analysis demonstrates that complex 1 contains CuII ions in both square‐pyramidal and square planar coordination. There are complete charge separation into [Cu(IM‐MeImz)2(SCN)]+ cations and 0.5[Cu(SCN)4]? anions, in a 2:1 ratio. The complex 1 was connected as a one‐dimensional polymer by intermolecular interactions. In complex 2 , the coordination around the copper atom is distorted square pyramidal and the apical position is occupied by one nitrogen atom of SCN? anion. The 2‐D network structure was formed and arranged through intermolecular H‐bonds interactions. The complex 1 exhibits intramolecular weak ferromagnetic coupling between CuII ion and the radicals.  相似文献   

10.
Two mononuclear copper(II) complexes [Cu(L)(NO2)](ClO4) (1) and [Cu(L)(MO4)]2· 5H2O (2) (L = 1,3,10, 12,16,19-hexaazatetracyclo[17,3,1,112.16,04.9]tetracosane) have been synthesized and their structures determined. Both compounds show a distorted square-pyramidal geometry with the two secondary and two tertiary amines of the macrocycle and one ligand coordinated at the axial position. Cyclic voltammetry of the complexes gives two one-electron waves corresponding to CuII/CuIII and CuII/CuI processes. The electronic spectra and electrochemical behavior of the complexes are significantly affected by the nature of the organic ligands.  相似文献   

11.
The preparation and crystal structures of (4,11‐di­benzyl‐1,4,8,11‐tetra­aza­bi­cyclo­[6.6.2]­hexa­decane‐κ4N)copper(I) hexa‐fluorophosphate, [Cu(C26H38N4)]PF6, and acetonitrile(4,11‐dibenzyl‐1,4,8,11‐tetraazabicyclo[6.6.2]hexadecane‐κ4N)‐copper(II) bis(hexafluorophosphate), [Cu(C2H3N)(C26H38‐N4)](PF6)2, are described. The CuI ion is tetracoordinated in a very distorted tetrahedron, while the CuII analogue is pentacoordinated in a square pyramid.  相似文献   

12.
Transition metal complexes of arginine (using Co(II), Ni(II), Cu(II) and Zn(II) cations separately) were synthesized and characterized by FTIR, TG/DTA‐DrTG, UV‐Vis spectroscopy and elemental analysis methods. Cu(II)‐Arg complex crystals was found suitable for x‐ray diffraction studies. It was contained, one mole CuII and Na+ ions, two arginate ligands, one coordinated aqua ligand and one solvent NO3? group in the asymmetric unit. The principle coordination sites of metal atom have been occupied by two N atoms of arginate ligands, two carboxylate O atoms, while the apical site was occupied by one O atom for CuII cation and two O atoms for CoII, NiII, ZnII atoms of aqua ligands. Although CuII ion adopts a square pyramidal geometry of the structure. CoII, NiII, ZnII cations have octahedral due to coordination number of these metals. Neighbouring chains were linked together to form a three‐dimensional network via hydrogen‐bonding between coordinated water molecule, amino atoms and O atoms of the bridging carboxylate groups. CuII complex was crystallized in the monoclinic space group P21, a = 8.4407(5) Å, b = 12.0976(5) Å, c = 10.2448(6) Å, V = 1041.03(10) Å3, Z = 2. Structures of the other metal complexes were similar to CuII complex, because of their spectroscopic studies have in agreement with each other. Copper complex has shown DNA like helix chain structure. Lastly, anti‐bacterial, anti‐microbial and anti‐fungal biological activities of complexes were investigated.  相似文献   

13.
New Copper(I, II) Compounds Complexes of the type [CuII(N∩N)2][CuICl1+x]2x (N∩N = en, pn, 2-amino picoline) are prepared from Cu(N∩N)2Cl2 and copper(I) chloride. [CuII(enac)][CuICl2]2 — a complex with a macrocyclic cation — is obtained, by the reaction of Cuen2Cl2 in aqueous acetone. Diacetyl monoxime partially reduces copper(II) of Cu(NSMe)2Cl2 and in this way causes the formation of [Cu(NSMe)2][CuCl3] (NSMe = β-aminoethyl methylsulfide). On the other hand a template reaction of this oxime with Cu(NSMe)2 (ClO4)2 produces CuII(ONNSMe)(ClO4) (HONNSMe?CH3C(NOH)C(NCH2CH2SCH3)CH3), which shows a reduced paramagnetism. Basing on magnetic behaviour, i. r. and vis spectra the structure of the new compounds is discussed.  相似文献   

14.
Tetradentate Schiff-base carboxylate-containing ligands, bis(2-pyridylmethyl)amino-3-propionic acid (Hpmpa) and bis(2-pyridylmethyl)amino-4-butyric acid (Hpmba), react with CuCl2 to give rise to the mononuclear complexes [Cu(Hpmpa)Cl]Cl · 2H2O (1) and [Cu(Hpmba)Cl2]· H2O (2). These complexes have been characterized by X-ray crystallography, spectroscopic and cyclic voltammetry. Crystal structure of (1) shows that the copper(II) ion has a distorted square-pyramidal geometry with the three nitrogen atoms of the Hpmpa ligand and one chloride anion occupying the basal plane and an oxygen atom from the carboxylate group coordinating the axial position. In (2), the coordination environment around the copper(II) ion reveals a distorted square-pyramids with three nitrogen atoms of the Hpmba ligand and one chloride anion that comprise the basal plane, whereas the apical position is filled by the chloride anion. Cyclic voltammetry of the complexes gives two one-electron waves corresponding to CuII/CuIII and CuIII/CuI processes. The electronic spectra and redox potentials of the complexes are influenced significantly by the N-pendant carboxylate groups.  相似文献   

15.
New copper complexes of DL-methioninoylsulfadiazine (MTS) and L-cystinoylsulfadiazine (CYS) were prepared and characterized using elemental analysis, IR, electronic spectroscopy, EPR spectroscopy, and thermal analysis. The mode of binding indicates that copper binds to MTS through carbonyl oxygen with the amino group nitrogen while for CuII–CYS the copper binds through carbonyl oxygen and SH with removal of its proton. The proposed structures were supported by conformational analysis which showed predominance of the trans form of copper(II)-L-cystinoylsulfadiazine. The two complexes enhanced oxidation of phenol and catechol in the presence of H2O2 under mild conditions. The catalyst shows proficiency toward oxidation of phenol and catechol compared to the auto-catalytic oxidation. CuII–MTS exhibited higher catalytic activity than CuII–CYS. The phenol and catechol oxidation is inhibited by Kojic acid.  相似文献   

16.
EMR studies of bis(benzene-dithiocarboxylato)copper(II) in the form of the pure solid sample, in solution as well as magnetically diluted in the host lattices of the corresponding complexes of NiII, ZnII, PdII, and PtII are reported. Two different samples (violet and blue) have been obtained in the NiII complex host lattice with EMR spectra indicating a superposition of several individual CuII signals. The EMR spectrum of the violet sample is explained by a superposition of the individual signals of (thio-, perthio-carboxylate)CuII and bis(perthiocarboxylate)CuII while that for the blue Cu/Ni(dtb)2 complex, as well as for Cu/Pd (dtb)2 is explained by different positions of the CuII species in the host lattices. The EMR spectrum typical for the magnetically diluted sample caused by self redox reaction has been recorded in the pure solid sample of copper(II) dithiocarboxylate complex.  相似文献   

17.
The title compound, [Cu(C4H4O5)(C6H6N4S2)]·H2O, displays a square‐pyramidal coordination geometry. The tridentate oxy­di­acetate dianion chelates the CuII atom in the facial mode. The large difference [0.487 (4) Å] between the longest Cu—O distance in the basal plane and that in the apical direction correlates with the small displacement of the CuII atom [0.0576 (13) Å] from the basal plane towards the apex of the square pyramid. The intermolecular hydrogen‐bonding network results in a closely overlapped arrangement of the coordination basal plane and the thia­zole ring of a neighboring mol­ecule.  相似文献   

18.
Summary The preparation and characterization of CuII, CoII, NiII and HgII complexes containing 1,4-diphenylthiosemicarbazide (DPhTSC) of the type [Cu(DPhTSC-H)X.H2O]nH2O (X= Cl, Br or Ac; n=0 or 1) · [M(DPhTSC-H)2yH2O] (M=CoII or NiII; y=0 or 1) and [Hg(DPhTSC)Cl2]2 H2O and [Cu(D-PhTSC)2SO4]H2O are reported. The stereochemistry of the complexes have been studied with the help of magnetic and electronic measurements. The anomalous magnetic moments observed in all cases have been explained. The i.r. spectral studies have been used to determine the bonding sites in the complexes.  相似文献   

19.
A new series of hexacoordinate cobalt(II), nickel(II) and copper(II) complexes of 5-(2-carboxyphenylazo)-2-thiohydantoin HL having formulae [LM(OAc)(H2O)2] · nH2O (M = CoII, CuII and NiII), [LMCl(H2O)2] · nH2O (M = CoII and NiII), [LCuCl(H2O)]2 · 2H2O, [LCu(H2O)3](ClO4) and [LCu(HSO4)(H2O)2] were isolated and characterized by elemental analyses, molar conductivities and magnetic susceptibilities, and by i.r., electronic and e.s.r. spectral measurements, as well as by thermal (t.g. and d.t.g.) analyses. The i.r. spectra indicate that the ligand HL behaves as a monobasic tridentate towards the three divalent metal ions via an azo-N, carboxylate-O and thiohydantoin-O atom. The magnetic moments and electronic spectral data suggest an octahedral geometry for CoII complexes, distorted octahedral geometry for both NiII and CuII complexes with a dimeric structure for [LCuCl(H2O)]2 · 2H2O through bridged chloro ligands. The X-band e.s.r. spectra reveal an axial symmetry for the copper(II) complexes with unsymmetrical Ms = ± 1 signal and G-parameter less than four for the dimeric [LCuCl(H2O)]2 · 2H2O. The thermogravimetry (t.g. and d.t.g.) of some complexes were studied; the order and kinetic parameters of their thermal degradation were determined by applying Coats–Redfern method and discussed.  相似文献   

20.
6,6′′‐Bis(2,4,6‐trimethylanilido)terpyridine (H2TpyNMes) was prepared as a rigid, tridentate pincer ligand containing pendent anilines as hydrogen bond donor groups in the secondary coordination sphere. The coordination geometry of (H2TpyNMes)copper(I)‐halide (Cl, Br and I) complexes is dictated by the strength of the NH–halide hydrogen bond. The CuICl and CuIICl complexes are nearly isostructural, the former presenting a highly unusual square‐planar geometry about CuI. The geometric constraints provided by secondary interactions are reminiscent of blue copper proteins where a constrained geometry, or entatic state, allows for extremely rapid CuI/CuII electron‐transfer self‐exchange rates. Cu(H2TpyNMes)Cl shows similar fast electron transfer (≈105 m ?1 s?1) which is the same order of magnitude as biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号