首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A systematic study of the accuracy factors for the computation of 15N NMR chemical shifts in comparison with available experiment in the series of 72 diverse heterocyclic azines substituted with a classical series of substituents (CH3, F, Cl, Br, NH2, OCH3, SCH3, COCH3, CONH2, COOH, and CN) providing marked electronic σ‐ and π‐electronic effects and strongly affecting 15N NMR chemical shifts is performed. The best computational scheme for heterocyclic azines at the DFT level was found to be KT3/pcS‐3//pc‐2 (IEF‐PCM). A vast amount of unknown 15N NMR chemical shifts was predicted using the best computational protocol for substituted heterocyclic azines, especially for trizine, tetrazine, and pentazine where experimental 15N NMR chemical shifts are almost totally unknown throughout the series. It was found that substitution effects in the classical series of substituents providing typical σ‐ and π‐electronic effects followed the expected trends, as derived from the correlations of experimental and calculated 15N NMR chemical shifts with Swain–Lupton's F and R constants.  相似文献   

2.
The main factors affecting the accuracy and computational cost of Gauge‐independent Atomic Orbitaldensity functional theory (GIAO–DFT) calculation of 15N NMR chemical shifts in the benchmark series of 16 amides are considered. Among those are the choice of the DFT functional and basis set, solvent effects, internal reference conversion factor and applicability of the locally dense basis set (LDBS) scheme. Solvent effects are treated within the polarizable continuum model (PCM) scheme as well as at supermolecular level with solvent molecules considered in explicit way. The best result is found for Keal and Tozer's KT3 functional used in combination with Jensen's pcS‐3 basis set with taking into account solvent effects within the polarizable continuum model. The proposed LDBS scheme implies pcS‐3 on nitrogen and pc‐2 elsewhere in the molecule. The resulting mean average error for the calculated 15N NMR chemical shifts is about 6 ppm. The application of the LDBS approach tested in a series of 16 amides results in a dramatic decrease in computational cost (more than an order of magnitude in time scale) with insignificant loss of accuracy.  相似文献   

3.
A number of computational schemes based on different Density Functional Theory (DFT) functionals in combination with a number of basis sets were tested in the calculation of 1H and 13C NMR chemical shifts of strychnine, as a typical representative of the vitally important natural products, and used as a challenging benchmark and a rigorous test for such calculations. It was found that the most accurate computational scheme, as compared with experiment, was PBE0/pcSseg-4//pcseg-3 characterized by a mean absolute error of 0.07 ppm for the range of about 7 ppm for 1H NMR chemical shifts and that of only 1.13 ppm for 13C NMR chemical shifts spread over the range of about 150 ppm. For more practical purposes, including investigation of larger molecules from this series, a much more economical computational scheme, PBE0/pcSseg-2//pcseg-2, characterized by almost the same accuracy and much less computational demand, was recommended.  相似文献   

4.
The main factors affecting the accuracy and computational cost of the gauge‐independent atomic orbital density functional theory (GIAO‐DFT) calculation of 15N NMR chemical shifts in the representative series of key nitrogen‐containing heterocycles – azoles and azines – have been systematically analyzed. In the calculation of 15N NMR chemical shifts, the best result has been achieved with the KT3 functional used in combination with Jensen's pcS‐3 basis set (GIAO‐DFT‐KT3/pcS‐3) resulting in the value of mean absolute error as small as 5 ppm for a range exceeding 270 ppm in a benchmark series of 23 compounds with an overall number of 41 different 15N NMR chemical shifts. Another essential finding is that basically, the application of the locally dense basis set approach is justified in the calculation of 15N NMR chemical shifts within the 3–4 ppm error that results in a dramatic decrease in computational cost. Based on the present data, we recommend GIAO‐DFT‐KT3/pcS‐3//pc‐2 as one of the most effective locally dense basis set schemes for the calculation of 15N NMR chemical shifts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The main factors affecting the accuracy and computational cost of the calculation of 31P NMR chemical shifts in the representative series of organophosphorous compounds are examined at the density functional theory (DFT) and second‐order Møller–Plesset perturbation theory (MP2) levels. At the DFT level, the best functionals for the calculation of 31P NMR chemical shifts are those of Keal and Tozer, KT2 and KT3. Both at the DFT and MP2 levels, the most reliable basis sets are those of Jensen, pcS‐2 or larger, and those of Pople, 6‐311G(d,p) or larger. The reliable basis sets of Dunning's family are those of at least penta‐zeta quality that precludes their practical consideration. An encouraging finding is that basically, the locally dense basis set approach resulting in a dramatic decrease in computational cost is justified in the calculation of 31P NMR chemical shifts within the 1–2‐ppm error. Relativistic corrections to 31P NMR absolute shielding constants are of major importance reaching about 20–30 ppm (ca 7%) improving (not worsening!) the agreement of calculation with experiment. Further better agreement with the experiment by 1–2 ppm can be obtained by taking into account solvent effects within the integral equation formalism polarizable continuum model solvation scheme. We recommend the GIAO‐DFT‐KT2/pcS‐3//pcS‐2 scheme with relativistic corrections and solvent effects taken into account as the most versatile computational scheme for the calculation of 31P NMR chemical shifts characterized by a mean absolute error of ca 9 ppm in the range of 550 ppm. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
The calculation of 15N NMR chemical shifts of 27 azoles and azines in 10 different solvents each has been carried out at the gauge including atomic orbitals density functional theory level in gas phase and applying the integral equation formalism polarizable continuum model (IEF‐PCM) and supermolecule solvation models to account for solvent effects. In the calculation of 15N NMR, chemical shifts of the nitrogen‐containing heterocycles dissolved in nonpolar and polar aprotic solvents, taking into account solvent effect is sufficient within the IEF‐PCM scheme, whereas for polar protic solvents with large dielectric constants, the use of supermolecule solvation model is recommended. A good agreement between calculated 460 values of 15N NMR chemical shifts and experiment is found with the IEF‐PCM scheme characterized by MAE of 7.1 ppm in the range of more than 300 ppm (about 2%). The best result is achieved with the supermolecule solvation model performing slightly better (MAE 6.5 ppm). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
The combined use of two‐dimensional NMR correlation experiments and gauge including atomic orbital density functional theory in 13C NMR chemical shift (CS) calculations allowed reliable and simple structural determination of regioisomeric heterocyclic systems that originate from the reactions of acylquinolinones with substituted hydrazines. Moreover, the results of differential analysis between the calculated 15N NMR CSs for hypothetical structures and the experimental data of the title azaheterocyclic systems were even more advantageous with respect to 13C because there was no need for correlational analysis: structures of the regioisomeric compounds could be determined just by direct comparison. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Long‐range β‐ and γ‐relativistic effects of halogens in 15N NMR chemical shifts of 20 halogenated azines (pyridines, pyrimidines, pyrazines, and 1,3,5‐triazines) are shown to be unessential for fluoro‐, chloro‐, and bromo‐derivatives (1–2 ppm in average). However, for iodocontaining compounds, β‐ and γ‐relativistic effects are important contributors to the accuracy of the 15N calculation. Taking into account long‐range relativistic effects slightly improves the agreement of calculation with experiment. Thus, mean average errors (MAE) of 15N NMR chemical shifts of the title compounds calculated at the non‐relativistic and full 4‐component relativistic levels in gas phase are accordingly 7.8 and 5.5 ppm for the range of about 150 ppm. Taking into account solvent effects within the polarizable continuum model scheme marginally improves agreement of computational results with experiment decreasing MAEs from 7.8 to 7.4 ppm and from 5.5 to 5.3 ppm at the non‐relativistic and relativistic levels, respectively. The best result (MAE: 5.3 ppm) is achieved at the 4‐component relativistic level using Keal and Tozer's KT3 functional used in combination with Dyall's relativistic basis set dyall.av3z with taking into account solvent effects within the polarizable continuum solvation model. The long‐range relativistic effects play a major role (of up to dozen of parts per million) in 15N NMR chemical shifts of halogenated nitrogen‐containing heterocycles, which is especially crucial for iodine derivatives. This effect should apparently be taken into account for practical purposes.  相似文献   

9.
15N NMR chemical shifts in the representative series of Schiff bases together with their protonated forms have been calculated at the density functional theory level in comparison with available experiment. A number of functionals and basis sets have been tested in terms of a better agreement with experiment. Complimentary to gas phase results, 2 solvation models, namely, a classical Tomasi's polarizable continuum model (PCM) and that in combination with an explicit inclusion of one molecule of solvent into calculation space to form supermolecule 1:1 (SM + PCM), were examined. Best results are achieved with PCM and SM + PCM models resulting in mean absolute errors of calculated 15N NMR chemical shifts in the whole series of neutral and protonated Schiff bases of accordingly 5.2 and 5.8 ppm as compared with 15.2 ppm in gas phase for the range of about 200 ppm. Noticeable protonation effects (exceeding 100 ppm) in protonated Schiff bases are rationalized in terms of a general natural bond orbital approach.  相似文献   

10.
Indoloquinoline alkaloids represent an important class of antimalarial, antibacterial and antiviral compounds. They have been shown to bind to DNA via intercalation preferentially at GC-rich sequences containing nonalternating CC sites. The stability of complexes formed with biological macromolecules depends on noncovalent binding. In the present study, the ability of indoloquinolines to form intermolecular interactions with solvents was investigated by using NMR spectroscopy and density functional theory (DFT) (B3LYP/6-31G**) calculations. NMR data measured for indoloquinoline bases and the corresponding hydrochlorides are discussed in relation to the structure. DFT calculations of shielding constants in vacuo and in solution allowed the investigation of the influence of the environment on the NMR parameters. Calculations incorporating solvent effects indicated significant changes in the anisotropy of the electron distribution, reflected in the span of the chemical shielding tensor (Omega = sigma11 - sigma33). Solvent effects on the span of the 13C and 15N shielding tensor depended on the type of atom and the data indicated a significant influence of solute-solvent interactions.  相似文献   

11.
The main factors affecting the accuracy and computational cost of the Second‐order Möller‐Plesset perturbation theory (MP2) calculation of 77Se NMR chemical shifts (methods and basis sets, relativistic corrections, and solvent effects) are addressed with a special emphasis on relativistic effects. For the latter, paramagnetic contribution (390–466 ppm) dominates over diamagnetic term (192–198 ppm) resulting in a total shielding relativistic correction of about 230–260 ppm (some 15% of the total values of selenium absolute shielding constants). Diamagnetic term is practically constant, while paramagnetic contribution spans over 70–80 ppm. In the 77Se NMR chemical shifts scale, relativistic corrections are about 20–30 ppm (some 5% of the total values of selenium chemical shifts). Solvent effects evaluated within the polarizable continuum solvation model are of the same order of magnitude as relativistic corrections (about 5%). For the practical calculations of 77Se NMR chemical shifts of the medium‐sized organoselenium compounds, the most efficient computational protocols employing relativistic Dyall's basis sets and taking into account relativistic and solvent corrections are suggested. The best result is characterized by a mean absolute error of 17 ppm for the span of 77Se NMR chemical shifts reaching 2500 ppm resulting in a mean absolute percentage error of 0.7%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
The synthesis and assignment of 15N and 13C NMR signals of the isoxazole ring in a series of para-substituted 3-phenyl derivatives are reported. DFT calculations of 15N and 13C chemical shifts are presented and compared to observed values. Substituent effects are interpreted in terms of the Hammett correlation and calculated bond orders.  相似文献   

13.
A series of 3‐substituted 1,2,3‐benzotriazin‐4‐ones, 1 and 2, were synthesized by standard methods and the 15N NMR spectra were recorded. All spectra were obtained using the natural abundance of the nitrogen‐15 isotope. The chemical shifts appear in the normal range for N‐1, N‐2 and N‐3 of the triazine ring, and also correlate with the chemical shifts in the spectra of the imidazolotriazinone, 4, and the imidazolotetrazinone, 5. Significantly, the spectra of 1a, 2 and 4, recorded with full NOE, show inversion of the singlet assigned to N‐3, demonstrating that these compounds exist in the tautomeric form shown. The structure of the 4‐iminobenzotriazinone (3) was confirmed by this 15N NMR analysis. The spectrum shows a signal for the NH‐bearing imino‐nitrogen atom, which is an inverted singlet in the NOE spectrum, whereas the signal from the N‐3 atom of 3 is not inverted in the NOE spectrum. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
The analysis of (15)N chemical shift data from over a hundred anilines, N-methyl anilines, N,N-dimethyl anilines and phenylhydrazines with substituents in the phenyl ring leads to an empirical equation, delta(cal) = deltaon + Deltao + Deltam + Deltap, for calculating (15)N NMR chemical shifts of the amino group. This equation is based on a linear regression analysis using eighteen substituent parameters and leads to good conformity with the expected data.  相似文献   

15.
The proton transfer equilibrium in a series of double Schiff base derivatives of trans‐1,2‐diaminocyclohexane in solution and the solid state was studied by means of 15N NMR spectroscopy and analysis of the deuterium isotope effect on the chemical shifts Δ15N(D). The presence of a proton transfer equilibrium in the N‐2‐hydroxynaphthylidene moieties of the Schiff bases studied in the solid state at room temperature was evidenced. The results confirmed the interrelation of the two hydrogen bonds in double Schiff base derivatives of trans‐1,2‐diaminocyclohexane. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
Treatment of 2‐acetyl‐2‐methylcyclopentanone with hydrazine hydrate yielded a new condensed hexahydro‐1,3,5‐triazine (3b), which is the first example of the ketimine‐type trimers. A complete 1H, 13C and 15N NMR assignment of the compound was achieved. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
The (15)N NMR chemical shifts of 1,2,3,4,5,6,7,8-octahydroacridine, 12 of its 9-substituted derivatives, and of the corresponding N-oxides were measured and examined in terms of the 9-substituent effects and the effects of N-oxidation. For the 9-substituent effects, good linear correlations were found with the Taft and Swain-Lupton substituent constants, for both octahydroacridines and their N-oxides. The (15)N chemical shifts of both octahydroacridines and their N-oxides also correlate well, linearly with the (13)C chemical shifts of the para-carbons in analogously substituted benzene derivatives.Within the studied compounds, the magnitudes of the N-oxidation effects range from - 16.4 to - 27.4 ppm (shielding), and also correlate linearly with the Taft and Swain-Lupton substituent constants, as well as with the bond orders of the N(+)-O(-) bonds in the corresponding N-oxides. Furthermore, a very good linear correlation is found between the (15)N chemical shifts of octahydroacridines and those of the corresponding N-oxides. From the (15)N chemical shifts data, the Taft and Swain-Lupton substituent constants for the diacetylamino group (-NAc(2)) were evaluated in the present paper, as follows: sigma(R) = 0.07 and sigma(I) = 0.15; R = 0.08 and F= 0.20.  相似文献   

18.
15N chemical shifts in an extensive series of para (15) and meta (15) as well as ortho (8) substituted benzonitriles, X-C6H4-CN, were measured in deuteriochloroform solutions, using three different methods of referencing. The standard error of the average chemical shift was less than 0.03 ppm in most cases. The results are discussed for both empirical correlations with substituent parameters and quantum chemical calculations. The 15N chemical shifts calculated at the GIAO/B3LYP/6-31 + G*//B3LYP/6-31 + G* level reproduce the experimental values well, and include nitrogen atoms in the substituent groups (range of 300 ppm with slope 0.98 and R = 0.998, n = 43). The 15N shifts in hydroxybenzonitriles are affected by interaction with the OH group. Therefore, these derivatives are excluded from the correlation analysis. The resultant 15N chemical shift correlates well with substituent constants, both in the simple Hammett or DSP relationships and the 13C substituent-induced chemical shifts of the CN carbon.  相似文献   

19.
A combined theoretical and experimental study revealed that the nature of the upfield (shielding) protonation effect in 15N NMR originates in the change of the contribution of the sp2‐hybridized nitrogen lone pair on protonation resulting in a marked shielding of nitrogen of about 100 ppm. On the contrary, for amine‐type nitrogen, protonation of the nitrogen lone pair results in the deshielding protonation effect of about 25 ppm, so that the total deshielding protonation effect of about 10 ppm is due to the interplay of the contributions of adjacent natural bond orbitals. A versatile computational scheme for the calculation of 15N NMR chemical shifts of protonated nitrogen species and their neutral precursors is proposed at the density functional theory level taking into account solvent effects within the supermolecule solvation model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Substituted 2-(phenylamino)-5-phenyl-1,3,4-oxadiazoles were studied by 15N NMR spectroscopy. All signals were assigned on the basis of HMQC and HMBC experiments. Chemical shifts values were correlated with empirical Hammett parameters as well as with calculated electron densities and chemical shieldings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号