首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a comprehensive investigation of the electronically excited states of helium clusters and droplets of sizes ranging from a few to several 10(7) atoms using time-resolved fluorescence excitation spectroscopy and quantum chemical ab initio calculations. We employ various approaches for our analysis considering the lifetime-dependence of the fluorescence intensity, spectral shifts, intensity scaling with cluster size, isotopic dependence, and density-dependence of the calculated electron wave function radii. A unique feature of helium clusters and droplets is their radially varying particle density. Our results show that short-lived fluorescence is sensitive to regions of increased density and probes excitations located in the bulk volume, whereas long-lived fluorescence is sensitive to regions of reduced density such as for small clusters or for the surface of large droplets. Spectra of (3)He droplets serve as a reference for low density, but are free from contributions of small clusters. This allows us to distinguish regions of reduced density as these can be due to both surface states or small clusters. Our analysis reveals a picture where spectral features are related to regions of different density due to isotopic composition, cluster size, and surface or bulk volume location of the excitations. The 2s and 2p related excitations appear as blue-shifted wings for small clusters or for excited atoms within the surface layer, whereas in the bulk-volume of large droplets, they appear as distinct bands with large intensities, dominating the entire spectrum. Excitations at energies higher than 23 eV are unambiguously assigned to regions of low and medium density location within the deeper parts of the surface layer but show no relation to the bulk volume. Our findings support the idea that in liquid helium high-lying states and, in particular, Rydberg states are quenched in favor of the 2s and 2p excitations.  相似文献   

2.
Theoretical studies on the stability and electronic structure of small carbon clusters assuming chain, ring, bowl, and fullerene structures have been carried out using a linear combination of atomic orbitals molecular orbital approach within a density functional formalism. Our studies on clusters containing between 12 and 60 atoms indicate three regimes for the growth and formation of carbon clusters. In clusters containing less than 20 atoms, the most stable geometry is the ring arrangements. Between 20 and 28 atoms, clusters with very different geometry have comparable energies. For clusters with larger than 30 atoms, the fullerene structures are the most stable structures. An analysis of the electronic structure shows a distinct correlation between the geometry and the nature of electronic states.  相似文献   

3.
We report a theoretical study of the nonadiabatic fragmentation dynamics of ionized neon clusters embedded in helium nanodroplets for cluster sizes up to n=14 atoms. The dynamics of the neon atoms is modeled using the molecular dynamics with quantum transitions method of Tully [J. Chem. Phys. 93, 1061 (1990)] with the nuclei treated classically and transitions between electronic states quantum mechanically. The potential-energy surfaces are derived from a diatomics-in-molecules model to which induced dipole-induced dipole interactions are added. The effect of the spin-orbit interaction is also discussed. The helium environment is modeled by a friction force acting on charged atoms whose speed exceeds the critical Landau velocity. The dependence of the fragment size distribution on the friction strength and on the initial nanodroplet size is investigated. By comparing with the available experimental data obtained for Ne3+ and Ne4+, a reasonable value for the friction coefficient, the only parameter of the model, is deduced. This value is then used to predict the effect of the helium environment on the dissociation dynamics of larger neon clusters, n=5-14. The results show stabilization of larger fragments than in the gas phase, but fragmentation is not completely caged. In addition, two types of dynamics are characterized for Ne4+: fast and explosive, therefore leaving no time for friction to cool down the process when dynamics starts on one of the highest electronic states, and slower, therefore leading to some stabilization by helium when it starts on one of the lowest electronic states.  相似文献   

4.
Excitation spectra up to the ionization threshold are reported for barium atoms located on the surface of helium nanodroplets. For states with low principal quantum number, the resonances are substantially broadened and shifted towards higher energy with respect to the gas phase. This has been attributed to the repulsive interaction of the excited atom with the helium at the Franck-Condon region. In contrast, for states with high principal quantum number the resonances are narrower and shifted towards lower energies. Photoelectron and ZEKE spectroscopy reveal that the redshift results from a lowering of the ionization threshold due to polarization of the helium by the barium ionic core. As a result of the repulsive interaction with the helium, excited barium atoms desorb from the surface of the droplets. Only when excited to the 6s6p (1)P(1) state, which reveals an attractive interaction with the helium, the atoms remain attached to the droplets.  相似文献   

5.
The topological analysis of the electron density for electronic excited states under the formalism of the quantum theory of atoms in molecules using time‐dependent density functional theory (TDDFT) is presented. Relaxed electron densities for electronic excited states are computed by solving a Z‐vector equation which is obtained by means of the Sternheimer interchange method. This is in contrast to previous work in which the electron density for excited states is obtained using DFT instead of TDDFT, that is, through the imposition of molecular occupancies in accordance with the electron configuration of the excited state under consideration. Once the electron density of the excited state is computed, its topological characterization and the properties of the atoms in molecules are obtained in the same manner that for the ground state. The analysis of the low‐lying singlet and triplet vertical excitations of CO and C6H6 are used as representative examples of the application of this methodology. Altogether, it is shown how this procedure provides insights on the changes of the electron density following photoexcitation and it is our hope that it will be useful in the study of different photophysical and photochemical processes. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
Following our work on the study of helium droplets and film doped with one electronically excited rubidium atom Rb(?) ((2)P) [M. Leino, A. Viel, and R. E. Zillich, J. Chem. Phys. 129, 184308 (2008)], we focus in this paper on the second excited state. We present theoretical studies of such droplets and films using quantum Monte Carlo approaches. Diffusion and path integral Monte Carlo algorithms combined with a diatomics-in-molecule scheme to model the nonpair additive potential energy surface are used to investigate the energetics and the structure of Rb(?)He(n) clusters. Helium films as a model for the limit of large clusters are also considered. As in our work on the first electronic excited state, our present calculations find stable Rb(?)He(n) clusters. The structures obtained are however different with a He-Rb(?)-He exciplex core to which more helium atoms are weakly attached, preferentially on one end of the core exciplex. The electronic absorption spectrum is also presented for increasing cluster sizes as well as for the film.  相似文献   

7.
One- and two-photon excitation spectra of sodium atoms on the surface of helium droplets are reported. The spectra are recorded by monitoring the photoionization yield of desorbed atoms as function of excitation frequency. The excitation spectra involving states with principal quantum number up to n = 6 can be reproduced by a pseudodiatomic model where the helium droplet is treated as a single atom. For the lowest excited states of sodium, the effective interaction potentials for this system can be approximated by the sum of NaHe pair potentials. For the higher excited states, the interaction of the sodium valence electron with the helium induces significant configuration mixing, leading to a failure of this approach. For these states, effective interaction potentials based on a perturbative treatment of the interactions between the valence electron, the alkali positive core, and the helium, as described in detail in the accompanying publication, yield excellent agreement with experiment.  相似文献   

8.
Quantum chemical calculations of geometric and electronic structure and vertical transition energies for several low-lying excited states of the neutral and negatively charged nitrogen-vacancy point defect in diamond (NV(0) and NV(-)) have been performed employing various theoretical methods and basis sets and using finite model NC(n)H(m) clusters. Unpaired electrons in the ground doublet state of NV(0) and triplet state of NV(-) are found to be localized mainly on three carbon atoms around the vacancy and the electronic density on the nitrogen and rest of C atoms is only weakly disturbed. The lowest excited states involve different electronic distributions on molecular orbitals localized close to the vacancy and their wave functions exhibit a strong multireference character with significant contributions from diffuse functions. CASSCF calculations underestimate excitation energies for the anionic defect and overestimate those for the neutral system. The inclusion of dynamic electronic correlation at the CASPT2 level leads to a reasonable agreement (within 0.25 eV) of the calculated transition energy to the lowest excited state with experiment for both systems. Several excited states for NV(-) are found in the energy range of 2-3 eV, but only for the 1(3)E and 5(3)E states the excitation probabilities from the ground state are significant, with the first absorption band calculated at approximately 1.9 eV and the second lying 0.8-1 eV higher in energy than the first one. For NV(0), we predict the following order of electronic states: 1(2)E (0.0), 1(2)A(2) (approximately 2.4 eV), 2(2)E (2.7-2.8 eV), 1(2)A(1), 3(2)E (approximately 3.2 eV and higher).  相似文献   

9.
A brief overview of the diffusion quantum Monte Carlo method is given. We illustrate the application to ground‐state calculations by a study of the relative stability of carbon clusters near the crossover to fullerene stability, thereby determining the smallest stable fullerene. The application to excited states is illustrated via a study of excitonic states in small hydrogenated silicon clusters. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

10.
We present a theoretical analysis of the electronic absorption spectra of tetracene in (4)He droplets based on many-body quantum simulations. Using the path integral ground state approach, we calculate one- and two-body reduced density matrices of the most strongly localized He atoms near the molecule surface and use these to investigate the helium ground-state quantum coherence and correlations when tetracene is in its electronic ground and excited states. We identify a trio of quasi-one-dimensional, strongly localized atoms adsorbed along the long axis of the molecule that show some quantum coherence among themselves but far less with the remaining solvating helium. We evaluate the single-particle natural orbitals of the localized He atoms by diagonalization of the one-body density matrix and use these to construct single- and many-particle solvating helium basis states with which the zero-phonon spectral features of the tetracene-(4)He(N) absorption spectrum are then calculated. The absorption spectrum resulting from the three-body density matrix for the strongly bound trio of helium atoms is in very good agreement with the experimental data, accounting quantitatively for the anomalous splitting of the zero-phonon line [Hartmann, M.; Lindinger, A.; Toennies, J. P.; Vilesov, A. F. Chem. Phys. 1998, 239, 139; Krasnokutski, S.; Rouillé, G.; Huisken, F. Chem. Phys. Lett. 2005, 406, 386]. Our results indicate that the combination of strong localization and the quasi-one-dimensional nature of trios of helium atoms adsorbed along the long axis of tetracene leads to a quantum coherent, yet highly correlated ground state for the helium density closest to the molecule. The spectroscopic analysis shows that this feature accounts quantitatively for the anomalous splittings and hitherto unexplained fine structure observed in the absorption spectra of tetracene and suggests that it may be responsible for the corresponding zero-phonon splittings in other quasi-one-dimensional planar aromatic molecules.  相似文献   

11.
12.
The stable structures and low temperature thermodynamics of cationic helium clusters are investigated theoretically using a diatomics-in-molecules model for the potential energy surfaces and a computational framework in which both electronic and nuclear degrees of freedom are treated on a quantum mechanical footing. While the charge is generally carried by two atoms, vibrational delocalization significantly spreads out the charge over multiple isomers for clusters containing five or more helium atoms. Our calculations indicate that large clusters are essentially fluid with a well-defined solvation shell around the charged core.  相似文献   

13.
This work provides a novel interpretation of elementary processes of photophysical relevance from the standpoint of the electron density using simple model reactions. These include excited states of H2 taken as a prototype for a covalent bond, excimer formation of He2 to analyze non‐covalent interactions, charge transfer by an avoided crossing of electronic states in LiF and conical interesections involved in the intramolecular scrambling in C2H4. The changes of the atomic and interaction energy components along the potential energy profiles are described by the interacting quantum atoms approach and the quantum theory of atoms in molecules. Additionally, the topological analysis of one‐ and two‐electron density functions is used to explore basic reaction mechanisms involving excited and degenerate states in connection with the virial theorem. This real space approach allows to describe these processes in a unified way, showing its versatility and utility in the study of chemical systems in excited states. © 2017 Wiley Periodicals, Inc.  相似文献   

14.
A method is described for calculating SCF wavefunctions for excited electronic states of atoms and molecules. The orthogonality conditions with the ground state wavefunction and the underlying excited states wavefunctions are introduced in the SCF process in a simplified form.  相似文献   

15.
16.
The molecular dynamics with quantum transitions (MDQT) method is applied to study the fragmentation dynamics of neon clusters following vertical ionization of neutral clusters with 3 to 14 atoms. The motion of the neon atoms is treated classically, while transitions between the adiabatic electronic states of the ionic clusters are treated quantum mechanically. The potential energy surfaces are described by the diatomics-in-molecules model in a minimal basis set consisting of the effective 2p orbitals on each neon atom for the missing electron. The fragmentation mechanism is found to be rather explosive, with a large number of events where several atoms simultaneously dissociate. This is in contrast with evaporative atom by atom fragmentation. The dynamics are highly nonadiabatic, especially at shorter times and for the larger clusters. Initial excitation of the neutral clusters does not affect the fragmentation pattern. The influence of spin-orbit coupling is also examined and found to be small, except for the smaller size systems for which the proportion of the Ne+ fragment is increased up to 43%. From the methodological point of view, most of the usual momentum adjustment methods at hopping events are shown to induce nonconservation of the total nuclear angular momentum because of the nonzero electronic to rotation coupling in these systems. A new method for separating out this coupling and enforcing the conservation of the total nuclear momentum is proposed. It is applied here to the MDQT method of Tully but it is very general and can be applied to other surface hopping methods.  相似文献   

17.
In 1965, Davidson has shown that the textbook explanation for the Hund's multiplicity rule in atoms, based on the Pauli principle, is wrong. The reason for the failure of the textbook proof, as has been given later by others and as appears today in modern textbooks, it is based on the need to introduce angular electronic correlation into the calculations. Here, we investigate an applicability of this argumentation for helium and for the case of two-electron spherically symmetric rectangular quantum dots (QDs). We show that, for helium and also for the QD, the differences between the singlet and triplet excited states can be explored by calculations within the framework of the mean-field approximation, and, surprisingly, without the need of introducing the angular electronic correlation. Moreover, our calculations have shown that the triplet state of the QD is lower in energy than the corresponding singlet state due to lower electronic repulsion contribution, exactly as being assumed in the oldest explanation of the Hund's rule based on the Pauli principle.  相似文献   

18.
A set of MO-LCAO calculations within the LSDA formalism has been performed for the analysis of the odd-even alternation in simple metal clusters. Electronic properties, including ionization potentials and partial density of states analyses were evaluated for clusters of Na, K, Cu and Ag ranging from two to nine atoms. The present study focus on the differences in magnitude of the odd-even alternation, which is attributed to the electronic level separation close to the Fermi level of the clusters. For the coinage metals, the hybridization between s, d and p states is shown to strongly influence the alternation, reducing the magnitude for copper to about the same value as for silver. The small reduction of the alternation magnitude due to a finite spin density for the odd clusters is also investigated by means of comparative LDA calculations.  相似文献   

19.
The preparation of an artificial superatom consisting of a positive charge inside a superfluid helium nanodroplet and an electron in an orbital surrounding the droplet is of fundamental interest and represents an experimental challenge. In this work, nanodroplets of several thousand helium atoms are doped with single caesium (Cs) atoms. While on the droplet, the Cs valence electron is excited in two steps through an intermediate state into nS, nP, and nD states. The excitation is monitored by laser induced fluorescence or, for high principal quantum numbers, by resonant three-photon-ionization. On-droplet Rydberg excitations are resolved up to about n = 20. The energies are compared with those of free Cs atom Rydberg states and quantum defects as well as the on-droplet ionization threshold are derived.  相似文献   

20.
Electronically excited states play important roles in many chemical reactions and spectroscopic techniques. In quantum chemistry, a common technique to solve excited states is the multiroot Davidson algorithm, but it is not designed for processes like X-ray spectroscopy that involves hundreds of highly excited states. We show how the use of a restricted active space wavefunction together with a projection operator to remove low-lying electronic states offers an efficient way to reach single and double-core-hole states. Additionally, several improvements to the stability and efficiency of the configuration interaction (CI) algorithm for a large number of states are suggested. When applied to a series of transition metal complexes the new CI algorithm does not only resolve divergence issues but also leads to typical reduction in computational time by 70%, with the largest savings for small molecules and large active spaces. Together, the projection operator and the improved CI algorithm now make it possible to simulate a wide range of single- and two-photon spectroscopies. © 2019 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号