首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of applied current density, anodizing time, and electrolyte temperature on the cell and pore morphology of anodic films and the voltage-time response obtained during galvanostatic anodizing of AA2024-T3 alloy in sulphuric acid electrolytes have been studied. Scanning electron microscopy was employed to observe the film morphology. Sponge-like porous structure was promoted by anodizing at relatively low current density and high electrolyte temperature. In contrast, linear porous structure was favoured under the converse conditions. Intermediate conditions resulted in films containing either sequential layers of the 2 morphologies or a morphology incorporating features of the 2 types; such conditions were associated with anodizing voltages in the range 25 to 35 V. The reasons for the morphological differences are proposed to be due to interactions between film growth stresses and stresses arising from oxygen evolution on the development of the alumina cells.  相似文献   

2.
Aluminium foam is obtained by the production of air into metallic melt. This material shows a very low density together with good mechanical properties, high impact energy absorption, and fire resistance. Different production ways to obtain metallic foam are possible. Considering the cost, the Alporas process is particularly interesting. By means of this production method, a block of metallic foam with close cells is obtained. By slicing, foam panels are obtained. The mechanical cut promotes the formation of an open cells texture on the surface. In this last case, the complex morphology of aluminium foam could be a critical point considering the corrosion behavior in aggressive environments, where localized corrosion phenomena, as pitting or crevice corrosion, are likely to occur. The anodizing treatment is one of the most used methods to improve the corrosion resistance of aluminium and aluminium alloys. The aim of this paper is to perform an anodization treatment to enhance the corrosion resistance of aluminium foam. Constant voltage anodization (12 V for 60 min) and pulsed current anodization (0.04 A/cm2 for 60 seconds and 0.01 A/cm2 for 15 seconds, repeated for 15 cycles) have been carried out in 15 wt% H2SO4 at 20°C. The anodized samples are observed in cross section by optical and electronic microscopes to investigate the structure of the anodic oxide layer and the presence of defects and to measure the thickness of the layer. The corrosion protection performance and the compactness of layers are evaluated using acetic salt spray test and electrochemical impedance spectroscopy.  相似文献   

3.
Significant research has been conducted to replace the chromium(VI)-based surface treatments, and some commercial substitute systems are now available and needs to be tested to evaluate their performance and to know how they comply with the required specifications. The anticorrosion properties provided by a commercially available trivalent chromium-based product—PreCoat A32—when applied to AA2024-T3 aluminium alloy substrates were evaluated in this work and compared with those obtained with a chromium(VI)-based pretreatment well-recognized reference (Alodine 1200S). The morphology and elemental composition of the conversion coatings were investigated by high-resolution microscopy and energy-dispersive X-ray analysis, respectively, being the wettability of the modified surface measured by contact angle goniometry. The data obtained reveal that PreCoat A32–treated surfaces are more apt to receive aqueous paint schemes than those healed with Alodine 1200S. The corrosion resistance of the treated samples was monitored by potentiodynamic polarisation assays and electrochemical impedance spectroscopy analysis, revealing that PreCoat A32 coatings provide improved corrosion protection for AA2024-T3. The corrosion resistance effectiveness of PreCoat A32 was also confirmed in trials realised in salt-spray chamber, humidity tests, and thermal cycling assays, where more severe exposure conditions were simulated. The gathered data clearly indicate that the PreCoat A32 brings together the mandatory qualities to successfully substitute the conventional and undesirable chromium(VI)-based treatments, in aeronautical and aerospace industry.  相似文献   

4.
This study has been conducted to investigate the effects of plastic deformation of an AA2024 aluminium alloy by cold rolling to 25%, 50% and 75% and then heat-treating and naturally ageing for 20 days to T4 on the microstructure and the electrochemical behavior. To characterize the microstructural modifications different techniques have been applied such as X-ray Diffraction (XRD) to demonstrate the intermetallic phases formed, Optical Microscopy (OM) and Scanning Electronic Microscopy (SEM) to evaluate their microstructures and grain size. Moreover, the surface topography has been measured to establish the roughness effect on the mechanical response when subjected to tensile, fatigue and micro-indentation tests. The corrosion behaviour was evaluated by Potentiodynamic Polarization Scanning, Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). The results revealed that cold-rolled samples with 50% plastic deformation show a smoother topography and exhibit the best compromise between mechanical and corrosion resistance.  相似文献   

5.
In this study, the effectiveness of 2‐mercaptobenzothiazole (2‐MBT), 8‐hydroxyquinoline and benzotriazole as corrosion inhibitors for AA 2024‐T3 aluminium alloy was evaluated. The corrosion behaviour in the presence of each compound was investigated by image‐assisted electrochemical noise analysis, electrochemical impedance spectroscopy, potentiodynamic polarization and the split cell technique. It was found that 2‐MBT has superior inhibition properties compared with the other inhibitors. In particular, the specimens immersed in 3.5% NaCl in the presence of 2‐MBT displayed high values of noise resistance that were maintained for over 400 h of testing, and high values of low‐frequency impedance, measured after immersion for 24 h. The split cell technique and potentiodynamic polarization tests indicated that only 2‐MBT decreases significantly both the anodic and the cathodic reaction rates. Scanning electron microscopy observations and energy dispersive X‐ray measurements complement the findings from electrochemical measurements indicating that only 2‐MBT protects the second phase particles, preventing dealloying, trenching and initiation of corrosion. © 2015 The Authors. Surface and Interface Analysis published by John Wiley & Sons Ltd.  相似文献   

6.
Aluminium alloys such as AA2024 are susceptible to severe corrosion attack in aggressive solutions (e.g. chlorides). Conversion coatings, like chromate, or rare earth conversion coatings are usually applied in order to improve corrosion behaviour of aluminium alloys. Methacrylate‐based hybrid films deposited with sol–gel technique might be an alternative to conversion coatings. Barrier properties, paint adhesion and possibly self‐healing ability are important aspects for replacement of chromate‐based pre‐treatments. This work evaluates the behaviour of cerium as corrosion inhibitor in methacrylate silane‐based hybrid films containing SiO2 nano‐particles on AA2024. Hybrid films were deposited on aluminium alloy AA2024 by means of dip‐coating technique. Two different types of coating were applied: a non‐inhibited film consisting of two layers (non‐inhibited system) and a similar film doped with cerium nitrate in an intermediate layer (inhibited system). The film thickness was 5 µm for the non‐inhibited system and 8 µm for the inhibited system. Film morphology and composition were investigated by means of GDOES (glow discharge optical emission spectroscopy). Moreover, GDOES qualitative composition profiles were recorded in order to investigate Ce content in the hybrid films as a function of immersion time in 0.05 M NaCl solution. The electrochemical behaviour of the hybrid films was studied in the same electrolyte by means of EIS technique (electrochemical impedance spectroscopy). Electrochemical measurements provide evidence that the inhibited system containing cerium displays recovery of electrochemical properties. This behaviour is not observed for the non‐inhibited coating. GDOES measurements provide evidence that the behaviour of inhibited system can be related to migration of Ce species to the substrate/coating interface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
The electrochemical impedance spectroscopy (EIS) technique has been shown to be an effective tool for monitoring endothelial cell behaviour on a multilayer functionalised gold electrode. Polystyrene, a reproducible model substrate, is deposited as a thin layer on a thiol functionalised gold electrode. Fibronectin, a protein promoting endothelial cell adhesion, is then adsorbed on the polystyrene surface. The different steps of this multilayer assembly are characterized by Faradaic impedance. The charge transfer resistance and the capacitance for the total layer are modified at each step according to the electrical properties of each layer. This gives the endothelial cells' electrical state in terms of its resistive and capacitive properties. In this study, the endothelial cell layer presents a specific charge transfer resistance equal to 1.55 kOmega cm(2) with no large defects in the cell layer, and a specific capacitance equal to few microF cm(-2) explained by the existence of pseudopods. These electrical properties are correlated to the endothelial cell viability, adhesion and cytoskeleton organization.  相似文献   

8.
The anodic dissolution kinetics of pure iron in a highly alkaline solution was systematically studied by EIS. A model based on its reaction mechanism was proposed, which can well explain the characteristics of EIS. From the model, it was found that the Fe(III) oxide covered on the iron surface was firstly electrochemically oxidized to an adsorbed Fe(V) intermediate, the latter then converted to the final Fe(VI) product and the initial Fe(III) reactant through a disproportionating reaction. The kinetic constants of each step as well as the covering densities of the Fe(III) reactant and the Fe(V) intermediate at different potentials were calculated from the EIS model.  相似文献   

9.
Samples of aluminium alloys AA2024‐T3 and AA7075‐T6 were treated with a chromate‐based deoxidizer, then conversion coated with a commercial cobalt‐based solution and finally sealed with a commercial vanadate‐based product. The alloy specimens were examined using scanning electron microscopy, transmission electron microscopy and Rutherford backscattering spectroscopy. The thickness of the cobalt‐based conversion coating increased rapidly up to 5 min of immersion but more slowly for longer times. Sealing resulted in penetration of vanadium through the oxide and a small increase in thickness due to the deposition of a thin sealing coating within the pores and on the external surface of the cobalt‐containing coating. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
Imidazopyridine derivatives, namely 4‐methoxy‐N‐((2‐(4‐methoxyphenyl)H‐imidazo[1,2‐a]pyridin‐3‐yl)methylene)benzenamine (MMPIPB) and 4‐chloro‐N‐((2‐(4‐methoxyphenyl)H‐imidazo[1,2‐a]pyridin‐3yl)methylene)benzenamine (CMPIPB), were investigated as inhibitors for mild steel corrosion in 15% HCl solution using the weight loss and electrochemical techniques. According to electrochemical impedance spectroscopy studies, MMPIPB and CMPIPB show corrosion inhibition efficiency of 84.8 and 77.2% at 10‐ppm concentration and 98.1 and 94.8% at 80‐ppm concentration, respectively at 303 K. The corrosion inhibition efficiency of both inhibitors increased with increasing inhibitor concentration and decreased with increasing temperature. The adsorption of both inhibitor molecules on the surface of mild steel obeys Langmuir adsorption isotherm. Polarization studies showed that both studied inhibitors were of mixed type in nature. Electrochemical impedance spectroscopy studies showed that for both inhibitors, the value of charge transfer resistance increased and double‐layer capacitance decreased on increasing the concentration of inhibitors. Scanning electron microscopy, energy‐dispersive X‐ray spectroscopy (EDX), and atomic force microscopy were performed for surface study. The density functional theory was employed for theoretical calculations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
操作条件对DMFC阴极电化学阻抗谱参数的影响   总被引:1,自引:0,他引:1  
通过降低阴极催化剂载量强化了阴极氧还原反应的电化学极化, 测量了不同操作条件下直接甲醇燃料电池(DMFC)的极化曲线和交流阻抗谱,并提出了改进的等效电路模型LR(CR)(QR(LR))用以分析温度、空气流量和甲醇流量对DMFC阴极电化学反应和传质极化过程的影响. 研究结果表明, 提高工作温度会导致更多的甲醇渗透到阴极, 加大阴极氧气还原反应的电荷转移电阻; 只有采用大的空气流量,才会有效地防止水淹, 加大氧气向催化剂层的传质, 促进阴极反应的进行; 适当提高甲醇的流量可以促进阳极和阴极电化学反应的进行, 但是过高的甲醇流速可能会降低电极表面的温度, 加剧甲醇的渗透.  相似文献   

12.
The corrosion behaviour of silanated AA2198-T851 alloy substrates with and with no manufacturing-process induced near-surface deformed layer (MPI-NSDL) has been investigated. Two methods (alkaline etching + desmutting and mechanical polishing) were employed in removing the MPI-NSDL. Silanization was performed using 2-bis-triethoxysilylethane. Electrochemical impedance spectroscopy (EIS), salt spray test, and microscopy techniques were employed in the investigation of the corrosion behaviours. The studies revealed that polishing appeared to be the best silanating pre-treatment (compared with degreasing and etching + desmutting) for the new generation AA2198-T851 Al-Cu-Li alloy, and this was reflected in the EIS spectra. The etched + desmutted and the degreased surface with MPI-NSDL did not respond well to silanization and presented more pitting sites per square millimeter. However, the severity of corrosion per pit was more on the polished sample compared with the other two. Also, the corrosion mechanisms were different for the three cases.  相似文献   

13.
This work presents a novel micro electrical impedance spectroscopy (μEIS) technique that can measure and discriminate the electrical signal responses of biotissues in real time. An EoN (EIS‐on‐a‐needle), EIS on the surface of a fine needle (400 μm in diameter), was fabricated using a newly developed flexible photomask film. The base material of the photomask is parylene‐C, which allows uniform contact on the curved surface of the needle; thus, the designed electrode patterns of the photomask can be transferred onto the needle surface with a high resolution (2.95 % or less in dimensional error). To validate the developed EoN as an electrical sensor, ex vivo experiments with various biotissues—butchered pork (skin, fat, and muscle) and human breast tissues (normal and cancerous)—were conducted by measuring real‐time electrical impedance during a frequency sweep. The conductivities (relative permittivity) of the pork tissues were evaluated by electrical equivalent circuit analysis: 56.6 mS/m (37,800), 68.0 mS/m (74,755), and 74.9 mS/m (26,145) for the skin, fat, and muscle, respectively. Moreover, the normal and cancerous tissues were well distinguished by electrical resistance at 4.04 kHz for various cancer grades (Elston grades 1, 2, and 3). Analysis of the electrical impedance suggests that the EoN can be utilized to diagnose the physiological states of biotissues in clinical use.  相似文献   

14.
Aiming the assessment of novel, environmentally friendly corrosion inhibitors that can substitute chromate‐based ones, this work describes and validates a method for the rapid screening of water‐soluble inhibitors. The technique involves a fixed potential being applied between identical electrodes while immersed in an inhibitive solution and with the absence of a reference electrode. The current flowing between the electrodes is measured and the combined electrochemical response of the anodic and cathodic reactions, with and without the inhibitor, is then characterized. The incorporation of nine pairs of different metallic wires into a single assembly enables the effect of inhibitors on different metals to be assessed rapidly. The methodology presented allows approximately 30 electrochemical experiments to be performed per hour. In order to prove the usefulness of the proposed rapid screening technique (multielectrode), results obtained with the multielectrode are validated by comparison to the results obtained with a single electrode using only AA2024‐T3. The accuracy, reproducibility and parameter dependence has been assessed with the variation of inhibitor type and solution pH. Low absolute errors are found when studying inhibitors with good performance, giving confidence that no good inhibitors would be missed by this rapid screening method. The effect of cross‐contamination has been assessed and found to be negligible for almost all the pH range. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
This article studies the evolution of near‐surface morphology as a function of various thermo‐mechanical treatments along the fabrication line of rolled AA5050 aluminium alloy. Ultra‐microtomy has been used to prepare cross‐sectional thin foils for transmission electron microscopy (TEM) and proper surfaces for scanning Kelvin probe force microscopy (SKPFM) analysis. A slight increase in the Volta potential difference (between the inter‐metallics and the matrix) between the as‐cast surface and the surface obtained after the first hot‐mill pass, emphasized that the changes in surface micro‐structure, which in turn affect the corrosion and electrochemical properties of the finished product, had already occurred at that stage. The Volta potential difference during the subsequent hot‐mill pass remained relatively constant. As far as the near‐surface morphology was concerned, hot‐rolling resulted in the formation of a heavily deformed surface layer. Annealing of the hot‐rolled aluminium sheet resulted in partial re‐crystallization of the surface layer. Subsequent cold‐rolling re‐introduced deformation in the near‐surface region. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
M. Saadawy 《电化学》2017,23(4):441
采用称重法、动电位极化法和电化学交流阻抗技术研究了30 oC时(1,3-Dioxolan-2-ylmethyl)三苯基溴化磷(DTPB)对0.5 mol·L-1柠檬酸中锌腐蚀行为的影响. 通过在环保型电解槽中对锌进行酸洗,这在文献中是不常用的. 结果表明,DTPB作为一种有效的防蚀剂,添加浓度仅为3×10-3 mol·L-1时,锌在柠檬酸溶液中的防蚀效率可达98.9%. 由于DTPB和碘化钾存在协同效应,两者联用时的防蚀效果要比单独使用DTPB强,防蚀参数为1.2,并随温度升高而减小. 本文提出了碘化钾作为吸附媒介,可使金属表面与DTPB结合的防蚀机制.  相似文献   

17.
The passive film of iron showed n‐type semiconductor characteristic in borate buffer solution, and its donor concentration increased slightly after tensile strain in the present study. However, comparing with solution‐annealed sample, the anodic passive film formed on tensile‐strained one was highly protective. The more dislocations on tensile‐strained sample promoted the diffusion of iron and oxygen vacancy. Moreover, more donor density (mainly oxygen vacancies) promoted the diffusion of oxygen. They all facilitated tensile‐strained sample to form Fe2O3 and thicker passive film on the surface. More Fe2O3 and thicker passive film on the surface of tensile‐strained iron could improve corrosion resistance. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
《印度化学会志》2023,100(10):101087
In this work, 2-Amino-1,3,5-triazine-4,6-dithiol (2-ATD) as novel and high efficiency corrosion inhibitor has been investigated for mild steel (MS) corrosion in 0.5 M HCl solution using electrochemical methods, scanning electron microscopy (SEM), energy disperse X-ray spectroscopy (EDX), atomic force microscopy (AFM) and quantum chemical calculation methods. Potentiodynamic polarization (PDP) curves indicate that 2-ATD is mixed type inhibitor, corrosion inhibition efficiency increased with increasing inhibitor concentration and reached its value of 96.5%. Evolution of exposure time versus corrosion behavior of 2-ATD is examined in corrosive medium. While corrosion potential (Ecorr) shifted more negative values, polarization resistances (Rp) decreased after 120 h exposure time due to the corrosion process. H2 volume is measured in uninhibited and inhibited solutions (10 mM 2-ATD) after 120 h exposure time. Very low volume (3.6 mL cm−2) of H2 is obtained on MS electrode in inhibited solution after 120 h of exposure, indicating that 2-ATD covers the entire surface against aggressive attack and retards the both anodic dissolution of MS and cathodic hydrogen evolution reactions. The adsorption process proposal is the Langmuir isotherm which is most suitable. Adsorption and thermodynamic parameters show that 2-ATD has a strong adsorption effect onto MS surface and includes mixed adsorption style (physical and chemical). Corrosion current density increases with increasing temperature and high activation energy (Ea) proves the strong adsorption of 2-ATD on the MS surface. Anti-corrosion mechanism of 2-ATD is described more detail with the potential of zero charge method. SEM, EDX and AFM analysis support the obtained results of electrochemical methods and confirm the existence of protective layer and strong adsorption of 2-ATD on the MS surface. Chronoamperometry test shows that current densities are almost constant whole experiment in the presence of organic film. Finally, quantum chemical calculation method of 2-ATD in blank solution is performed to investigate the active sites for possible attachment with MS surface.  相似文献   

19.
Recent interest in environmentally friendly alternatives to chromate‐based corrosion inhibitors has led to the development of a range of novel coating formulations. The work described herein is aimed at developing a novel methodology to contribute to investigation of the self‐healing and active corrosion protection of the new coatings. An experimental procedure has been developed to model a defect in the coating by fixing coated specimens in close proximity to the uncoated AA2024‐T3, each separated by a narrow gap containing sodium chloride solution. After exposure to the corrosive environment, elemental depth profiles of the uncoated specimens were acquired by glow discharge optical emission spectroscopy (GDOES). The depth profiles of selected elements (notably aluminium, oxygen and copper) were shown to have characteristics which can be correlated with bulk surface roughening/intensity of corrosion, the thickness of the corroded layer and de‐alloying/re‐distribution of copper. An unanticipated inhibitory effect was noted in the case of a coating doped with γ‐Al2O3 (γ‐alumina or AluOx). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Elemental depth profiling by glow discharge optical emission spectroscopy has been used to characterise the corrosion products on AA2024‐T3. In previous work, the aluminium, oxygen and copper depth profiles were shown to provide information regarding surface roughening, the thickness of corroded layers and extent of copper de‐alloying/relocation. In the present work, the study is extended to the detection of corrosion inhibitors deposited on the exposed alloy surface in a model defect. The work includes a comparison of hybrid coatings doped with inhibitors encapsulated in nanocontainers and with the direct addition of inhibitor species to the coating matrix. The work also investigates the effects of inhibitor addition to sol–gel coatings or primer systems or both, highlighting the possible synergistic effects of mixed inhibitor systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号